Factors Influencing Matching of Ride-Hailing Service Using Machine Learning Method
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Changhyo Yi & Kijung Kim, 2018. "A Machine Learning Approach to the Residential Relocation Distance of Households in the Seoul Metropolitan Region," Sustainability, MDPI, vol. 10(9), pages 1-19, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- JinHyo Joseph Yun & Xiaofei Zhao & KwangHo Jung & Tan Yigitcanlar, 2020. "The Culture for Open Innovation Dynamics," Sustainability, MDPI, vol. 12(12), pages 1-21, June.
- Mohammadbashir Sedighi & Hamideh Parsaeiyan & Yashar Araghi, 2021. "An Empirical Study of Intention to Continue Using of Digital Ride-hailing Platforms," The Review of Socionetwork Strategies, Springer, vol. 15(2), pages 489-515, November.
- Chee Sun Lee & Peck Yeng Sharon Cheang & Massoud Moslehpour, 2022. "Predictive Analytics in Business Analytics: Decision Tree," Advances in Decision Sciences, Asia University, Taiwan, vol. 26(1), pages 1-30, March.
- Tubagus Robbi Megantara & Sudradjat Supian & Diah Chaerani, 2022. "Strategies to Reduce Ride-Hailing Fuel Consumption Caused by Pick-Up Trips: A Mathematical Model under Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
- JinHyo Joseph Yun & Xiaofei Zhao & Jinxi Wu & John C. Yi & KyungBae Park & WooYoung Jung, 2020. "Business Model, Open Innovation, and Sustainability in Car Sharing Industry—Comparing Three Economies," Sustainability, MDPI, vol. 12(5), pages 1-27, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Uijeong Hwang & Myungje Woo, 2020. "Analysis of Inter-Relationships between Urban Decline and Urban Sprawl in City-Regions of South Korea," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
More about this item
Keywords
machine learning; ride-hailing service; decision tree; trip distance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5615-:d:275648. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.