IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i1p225-d194927.html
   My bibliography  Save this article

Mental Model Analysis of Biogas Energy Perceptions and Policy Reveals Potential Constraints in a Japanese Farm Community

Author

Listed:
  • Masayasu Asai

    (Policy Research Institute, Ministry of Agriculture, Forestry and Fisheries (PRIMAFF), 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan)

  • Takashi Hayashi

    (Policy Research Institute, Ministry of Agriculture, Forestry and Fisheries (PRIMAFF), 3-1-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-0013, Japan)

  • Mitasu Yamamoto

    (Graduate School of Commerce, Major in Entrepreneurship, Otaru University of Commerce, Midori 3-5-21, Otaru, Hokkaido 047-8501, Japan)

Abstract

Biogas systems are complex and involve many local stakeholders who produce and utilize energy and digestate. If the systems are managed properly, they offer environmental and socioeconomic benefits to the community. However, further expansion may be challenging when differences in values and perspectives exist among stakeholders. This study analyzed perceptions among local biogas stakeholders by using a mental model approach. A local community in a northern Japanese island was chosen as a case study, and 22 stakeholders were asked to develop individual mental models of the biogas system. We found that many stakeholders shared the cognitive benefits of biogas, while there were perception differences regarding digestate use. Arable farmers mentioned technical and non-technical constraints for accepting digestate, while dairy and non-farmers were ambivalent about these demand-side constraints. This perception difference may lead to potential obstacles for future expansion of biogas systems in the region. Therefore, biogas policy should incorporate actions for better usage of digestate. These include the mandatory planning of digestate use when designing a new biogas plant, as well as actions to improve the attractiveness of digestate for arable farmers. These findings are useful for other livestock-intensive areas where the number of biogas plants is rapidly increasing but digestate management is yet organized.

Suggested Citation

  • Masayasu Asai & Takashi Hayashi & Mitasu Yamamoto, 2019. "Mental Model Analysis of Biogas Energy Perceptions and Policy Reveals Potential Constraints in a Japanese Farm Community," Sustainability, MDPI, vol. 11(1), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:1:p:225-:d:194927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/1/225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/1/225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carrosio, Giovanni, 2013. "Energy production from biogas in the Italian countryside: Policies and organizational models," Energy Policy, Elsevier, vol. 63(C), pages 3-9.
    2. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    3. Rupf, Gloria V. & Bahri, Parisa A. & de Boer, Karne & McHenry, Mark P., 2015. "Barriers and opportunities of biogas dissemination in Sub-Saharan Africa and lessons learned from Rwanda, Tanzania, China, India, and Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 468-476.
    4. Case, S.D.C. & Oelofse, M. & Hou, Y. & Oenema, O. & Jensen, L.S., 2017. "Farmer perceptions and use of organic waste products as fertilisers – A survey study of potential benefits and barriers," Agricultural Systems, Elsevier, vol. 151(C), pages 84-95.
    5. Mark Morrison & Eddie Oczkowski & Jenni Greig, 2011. "The primacy of human capital and social capital in influencing landholders’ participation in programmes designed to improve environmental outcomes," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(4), pages 560-578, October.
    6. Reise, Christian & Musshoff, Oliver & Granoszewski, Karol & Spiller, Achim, 2012. "Which factors influence the expansion of bioenergy? An empirical study of the investment behaviours of German farmers," Ecological Economics, Elsevier, vol. 73(C), pages 133-141.
    7. Tranter, R.B. & Swinbank, A. & Jones, P.J. & Banks, C.J. & Salter, A.M., 2011. "Assessing the potential for the uptake of on-farm anaerobic digestion for energy production in England," Energy Policy, Elsevier, vol. 39(5), pages 2424-2430, May.
    8. Andrea G. Capodaglio & Arianna Callegari & Maria Virginia Lopez, 2016. "European Framework for the Diffusion of Biogas Uses: Emerging Technologies, Acceptance, Incentive Strategies, and Institutional-Regulatory Support," Sustainability, MDPI, vol. 8(4), pages 1-18, March.
    9. Asai, Masayasu & Langer, Vibeke & Frederiksen, Pia & Jacobsen, Brian H., 2014. "Livestock farmer perceptions of successful collaborative arrangements for manure exchange: A study in Denmark," Agricultural Systems, Elsevier, vol. 128(C), pages 55-65.
    10. Qu, Wei & Tu, Qin & Bluemling, Bettina, 2013. "Which factors are effective for farmers’ biogas use?–Evidence from a large-scale survey in China," Energy Policy, Elsevier, vol. 63(C), pages 26-33.
    11. Asai, Masayasu & Moraine, Marc & Ryschawy, Julie & de Wit, Jan & Hoshide, Aaron K. & Martin, Guillaume, 2018. "Critical factors for crop-livestock integration beyond the farm level: A cross-analysis of worldwide case studies," Land Use Policy, Elsevier, vol. 73(C), pages 184-194.
    12. Matthew D. Wood & Ann Bostrom & Todd Bridges & Igor Linkov, 2012. "Cognitive Mapping Tools: Review and Risk Management Needs," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1333-1348, August.
    13. He, Guizhen & Bluemling, Bettina & Mol, Arthur P.J. & Zhang, Lei & Lu, Yonglong, 2013. "Comparing centralized and decentralized bio-energy systems in rural China," Energy Policy, Elsevier, vol. 63(C), pages 34-43.
    14. Gray, Steven & Chan, Alex & Clark, Dan & Jordan, Rebecca, 2012. "Modeling the integration of stakeholder knowledge in social–ecological decision-making: Benefits and limitations to knowledge diversity," Ecological Modelling, Elsevier, vol. 229(C), pages 88-96.
    15. Chen, Wei-Ming & Kim, Hana & Yamaguchi, Hideka, 2014. "Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan," Energy Policy, Elsevier, vol. 74(C), pages 319-329.
    16. Bluemling, Bettina & Mol, Arthur P.J. & Tu, Qin, 2013. "The social organization of agricultural biogas production and use," Energy Policy, Elsevier, vol. 63(C), pages 10-17.
    17. Brudermann, Thomas & Mitterhuber, Corinna & Posch, Alfred, 2015. "Agricultural biogas plants – A systematic analysis of strengths, weaknesses, opportunities and threats," Energy Policy, Elsevier, vol. 76(C), pages 107-111.
    18. Lantz, Mikael & Svensson, Mattias & Bjornsson, Lovisa & Borjesson, Pal, 2007. "The prospects for an expansion of biogas systems in Sweden--Incentives, barriers and potentials," Energy Policy, Elsevier, vol. 35(3), pages 1830-1843, March.
    19. Hanna L. Breetz & Karen Fisher-Vanden & Hannah Jacobs & Claire Schary, 2005. "Trust and Communication: Mechanisms for Increasing Farmers’ Participation in Water Quality Trading," Land Economics, University of Wisconsin Press, vol. 81(2).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Adami & Marco Schiavon, 2021. "From Circular Economy to Circular Ecology: A Review on the Solution of Environmental Problems through Circular Waste Management Approaches," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    2. Chukwuma, Emmanuel Chibundo & Okey-Onyesolu, Faith Chinenye & Ani, Kingsley Amaechi & Nwanna, Emmanuel Chukwudi, 2021. "GIS bio-waste assessment and suitability analysis for biogas power plant: A case study of Anambra state of Nigeria," Renewable Energy, Elsevier, vol. 163(C), pages 1182-1194.
    3. Lulu Yang & Xu Xiao & Ke Gu, 2021. "Agricultural Waste Recycling Optimization of Family Farms Based on Environmental Management Accounting in Rural China," Sustainability, MDPI, vol. 13(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bluemling, Bettina, 2013. "Synopsis of the Special Issue Section: “The social organization of agricultural biogas production and use”," Energy Policy, Elsevier, vol. 63(C), pages 52-54.
    2. Atsushi Shimahata & Mohamed Farghali & Masahiko Fujii, 2020. "Factors Influencing the Willingness of Dairy Farmers to Adopt Biogas Plants: A Case Study in Hokkaido, Japan," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    3. Kari-Anne Lyng & Lise Skovsgaard & Henrik Klinge Jacobsen & Ole Jørgen Hanssen, 2020. "The implications of economic instruments on biogas value chains: a case study comparison between Norway and Denmark," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7125-7152, December.
    4. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Brudermann, Thomas & Mitterhuber, Corinna & Posch, Alfred, 2015. "Agricultural biogas plants – A systematic analysis of strengths, weaknesses, opportunities and threats," Energy Policy, Elsevier, vol. 76(C), pages 107-111.
    6. Bluemling, Bettina & de Visser, Ina, 2013. "Overcoming the “club dilemma” of village-scale bioenergy projects—The case of India," Energy Policy, Elsevier, vol. 63(C), pages 18-25.
    7. Ryschawy, Julie & Tiffany, Sara & Gaudin, Amélie & Niles, Meredith T. & Garrett, Rachael D., 2021. "Moving niche agroecological initiatives to the mainstream: A case-study of sheep-vineyard integration in California," Land Use Policy, Elsevier, vol. 109(C).
    8. Bianca Cavicchi & Sergio Palmieri & Marco Odaldi, 2017. "The Influence of Local Governance: Effects on the Sustainability of Bioenergy Innovation," Sustainability, MDPI, vol. 9(3), pages 1-22, March.
    9. Bluemling, Bettina & Mol, Arthur P.J. & Tu, Qin, 2013. "The social organization of agricultural biogas production and use," Energy Policy, Elsevier, vol. 63(C), pages 10-17.
    10. Skovsgaard, Lise & Jacobsen, Henrik Klinge, 2017. "Economies of scale in biogas production and the significance of flexible regulation," Energy Policy, Elsevier, vol. 101(C), pages 77-89.
    11. Chanthawong, Anuman & Dhakal, Shobhakar, 2016. "Stakeholders' perceptions on challenges and opportunities for biodiesel and bioethanol policy development in Thailand," Energy Policy, Elsevier, vol. 91(C), pages 189-206.
    12. Ramos-Suárez, J.L. & Ritter, A. & Mata González, J. & Camacho Pérez, A., 2019. "Biogas from animal manure: A sustainable energy opportunity in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 137-150.
    13. Zhang, Weishi & Wang, Can & Zhang, Long & Xu, Ying & Cui, Yuanzheng & Lu, Zifeng & Streets, David G., 2018. "Evaluation of the performance of distributed and centralized biomass technologies in rural China," Renewable Energy, Elsevier, vol. 125(C), pages 445-455.
    14. Chodkowska-Miszczuk Justyna & Kulla Marián & Novotný Ladislav, 2017. "The role of energy policy in agricultural biogas energy production in Visegrad countries," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 35(35), pages 19-34, March.
    15. O'Connor, S. & Ehimen, E. & Pillai, S.C. & Black, A. & Tormey, D. & Bartlett, J., 2021. "Biogas production from small-scale anaerobic digestion plants on European farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    16. Asai, Masayasu & Langer, Vibeke & Frederiksen, Pia & Jacobsen, Brian H., 2014. "Livestock farmer perceptions of successful collaborative arrangements for manure exchange: A study in Denmark," Agricultural Systems, Elsevier, vol. 128(C), pages 55-65.
    17. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2016. "Review of barriers to the dissemination of decentralized renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 477-490.
    18. D'Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "RES-T trajectories and an integrated SWOT-AHP analysis for biomethane. Policy implications to support a green revolution in European transport," Energy Policy, Elsevier, vol. 138(C).
    19. Lora Grando, Rafaela & de Souza Antune, Adelaide Maria & da Fonseca, Fabiana Valéria & Sánchez, Antoni & Barrena, Raquel & Font, Xavier, 2017. "Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 44-53.
    20. Chen, Qiu & Liu, Tianbiao, 2017. "Biogas system in rural China: Upgrading from decentralized to centralized?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 933-944.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:1:p:225-:d:194927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.