IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5523-d273886.html
   My bibliography  Save this article

Status of Waste Management in the East African Cities: Understanding the Drivers of Waste Generation, Collection and Disposal and Their Impacts on Kampala City’s Sustainability

Author

Listed:
  • Shamim Aryampa

    (School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
    School of Agricultural Sciences, Makerere University, P. O. Box 7062 Kampala, Uganda)

  • Basant Maheshwari

    (School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia)

  • Elly Sabiiti

    (School of Agricultural Sciences, Makerere University, P. O. Box 7062 Kampala, Uganda)

  • Najib L Bateganya

    (Kampala Capital City Authority, City Hall, P. O. Box 7010 Kampala, Uganda)

  • Brian Bukenya

    (Kampala Capital City Authority, City Hall, P. O. Box 7010 Kampala, Uganda)

Abstract

The factors that influence waste generation and management vary with country but there is a gap in the availability of waste data in Africa limiting the assessment of these factors for sustainability. Hence, this study was aimed at evaluating the drivers of waste generation, collection and disposal, and their impact on sustainability of Kampala as compared to the East African Community (EAC). Waste generation in Kampala was calculated using recorded waste collection efficiencies while data for Nairobi and Dar es Salaam was obtained from existing literature. Waste quantities for disposal were recorded daily at Kiteezi landfill from 2011 to 2017. Results showed that the major drivers of waste generation, collection and disposal in the EAC are population growth, vehicle capacity and the need for disposal respectively. Waste generation rate in Kampala increased from 0.26 to 0.47 kg/capita/day and the annual waste quantity increased significantly ( p < 0.5) by 48% from 227,916 to 481,081 tons corresponding to a 54% population increase. Waste collection efficiency increased from 30% to 64% and hence waste for disposal increased significantly ( p < 0.5), with a mean of 15,823 tons/month; but varied significantly ( p < 0.5) with the city division. The most (5120 tons) and least (3472 tons) waste per month was collected from the Central and Nakawa divisions respectively. Additionally, Kampala Capital City Authority collected significantly more waste than private collectors for all study years. Waste is disposed of at the Kiteezi landfill despite exhausted capacity. Future projections showed that by 2030, annual waste would increase by approximately 60% for Kampala and Nairobi and by 74% for Dar es Salaam. Dar es Salaam generated the highest amount of waste, five times more than Kampala. More investment needs to be made towards the reduction of waste disposal and strategies developed for the reuse and recycling of waste.

Suggested Citation

  • Shamim Aryampa & Basant Maheshwari & Elly Sabiiti & Najib L Bateganya & Brian Bukenya, 2019. "Status of Waste Management in the East African Cities: Understanding the Drivers of Waste Generation, Collection and Disposal and Their Impacts on Kampala City’s Sustainability," Sustainability, MDPI, vol. 11(19), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5523-:d:273886
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walter R. Stahel, 2016. "The circular economy," Nature, Nature, vol. 531(7595), pages 435-438, March.
    2. Daniel Hoornweg & Perinaz Bhada-Tata & Christopher Kennedy, 2015. "Peak Waste: When Is It Likely to Occur?," Journal of Industrial Ecology, Yale University, vol. 19(1), pages 117-128, February.
    3. Daniel Hoornweg & Perinaz Bhada-Tata & Chris Kennedy, 2013. "Environment: Waste production must peak this century," Nature, Nature, vol. 502(7473), pages 615-617, October.
    4. Henning Wilts & Nadja Von Gries & Bettina Bahn-Walkowiak, 2016. "From Waste Management to Resource Efficiency—The Need for Policy Mixes," Sustainability, MDPI, vol. 8(7), pages 1-16, July.
    5. Cohen, Barney, 2006. "Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability," Technology in Society, Elsevier, vol. 28(1), pages 63-80.
    6. Pasquale Marcello Falcone, 2019. "Tourism-Based Circular Economy in Salento (South Italy): A SWOT-ANP Analysis," Social Sciences, MDPI, vol. 8(7), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aryampa, Shamim & Maheshwari, Basant & Sabiiti, Elly N. & Bateganya, Najib L. & Olobo, Christopher, 2022. "Understanding the impacts of waste disposal site closure on the livelihood of local communities in africa: A case study of the kiteezi landfill in Kampala, Uganda," World Development Perspectives, Elsevier, vol. 25(C).
    2. Madugu A. J & Kayam A & Joel L. K & Tiddy S. A, 2024. "Effect of Dissemination of Agricultural Information through Radio on Crop Output," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(3s), pages 2273-2286, March.
    3. Feriel Kheira Kebaili & Amel Baziz-Berkani & Hani Amir Aouissi & Florin-Constantin Mihai & Moustafa Houda & Mostefa Ababsa & Marc Azab & Alexandru-Ionut Petrisor & Christine Fürst, 2022. "Characterization and Planning of Household Waste Management: A Case Study from the MENA Region," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
    4. Vilma Geni Slomski & Ivan Carlos Silva Lima & Valmor Slomski & Tiago Slavov, 2020. "Pathways to Urban Sustainability: An Investigation of the Economic Potential of Untreated Household Solid Waste (HSW) in the City of São Paulo," Sustainability, MDPI, vol. 12(13), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewa Mazur-Wierzbicka, 2021. "Towards Circular Economy—A Comparative Analysis of the Countries of the European Union," Resources, MDPI, vol. 10(5), pages 1-25, May.
    2. Luis E. Ruiz & Ana C. Pinho & David N. Resende, 2022. "3D Printing as a Disruptive Technology for the Circular Economy of Plastic Components of End-of-Life Vehicles: A Systematic Review," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    3. Ronny Meglin & Susanne Kytzia & Guillaume Habert, 2022. "Regional circular economy of building materials: Environmental and economic assessment combining Material Flow Analysis, Input‐Output Analyses, and Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 562-576, April.
    4. Claudia Diana Sabău-Popa & Alexandra Maria Bele & Anca Otilia Dodescu & Marcel Ioan Boloș, 2022. "How Does the Circular Economy Applied in the European Union Support Sustainable Economic Development?," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    5. Pankaj Bajracharya & Selima Sultana, 2022. "Examining the Use of Urban Growth Boundary for Future Urban Expansion of Chattogram, Bangladesh," Sustainability, MDPI, vol. 14(9), pages 1-21, May.
    6. Ahsan Nawaz & Xing Su & Qaiser Mohi Ud Din & Muhammad Irslan Khalid & Muhammad Bilal & Syyed Adnan Raheel Shah, 2020. "Identification of the H&S (Health and Safety Factors) Involved in Infrastructure Projects in Developing Countries-A Sequential Mixed Method Approach of OLMT-Project," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    7. Leticia Regueiro & Richard Newton & Mohamed Soula & Diego Méndez & Björn Kok & David C. Little & Roberto Pastres & Johan Johansen & Martiña Ferreira, 2022. "Opportunities and limitations for the introduction of circular economy principles in EU aquaculture based on the regulatory framework," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2033-2044, December.
    8. Alina Kulczyk-Dynowska & Agnieszka Stacherzak, 2022. "The Impact of a City on Its Environment: The Prism of Demography and Selected Environmental and Technical Aspects Based on the Case of Major Lower Silesian Cities," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    9. Vu, Khuong & Hartley, Kris, 2018. "Promoting smart cities in developing countries: Policy insights from Vietnam," Telecommunications Policy, Elsevier, vol. 42(10), pages 845-859.
    10. Zhixiong Tan & Haili Wu & Qingyang Chen & Jiejun Huang, 2024. "Spatiotemporal Analysis of Air Quality and Its Driving Factors in Beijing’s Main Urban Area," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    11. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    12. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    13. Dinkelman, Taryn & Schulhofer-Wohl, Sam, 2015. "Migration, congestion externalities, and the evaluation of spatial investments," Journal of Development Economics, Elsevier, vol. 114(C), pages 189-202.
    14. Alessandro De Matteis & Fethiye Burcu Turkmen Ceylan & Mona Daoud & Anne Kahuthu, 2022. "A systemic approach to tackling ocean plastic debris," Environment Systems and Decisions, Springer, vol. 42(1), pages 136-145, March.
    15. Mari-Isabella Stan, 2022. "The impact of the pandemic crisis on employment in the context of urbanization," Technium Social Sciences Journal, Technium Science, vol. 33(1), pages 492-505, July.
    16. Zhen Yang & Jun Lei & Jian-Gang Li, 2019. "Identifying the Determinants of Urbanization in Prefecture-Level Cities in China: A Quantitative Analysis Based on Spatial Production Theory," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    17. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    18. Bernard Fosu Frimpong & Frank Molkenthin, 2021. "Tracking Urban Expansion Using Random Forests for the Classification of Landsat Imagery (1986–2015) and Predicting Urban/Built-Up Areas for 2025: A Study of the Kumasi Metropolis, Ghana," Land, MDPI, vol. 10(1), pages 1-21, January.
    19. Yan Yan & Hui Liu & Ningcheng Wang & Shenjun Yao, 2021. "How Does Low-Density Urbanization Reduce the Financial Sustainability of Chinese Cities? A Debt Perspective," Land, MDPI, vol. 10(9), pages 1-18, September.
    20. Ulep, Valerie Gilbert T. & Ortiz, Danica Aisa P. & Go, John Juliard & Duante, Charmaine & Gonzales, Rosa C. & Mendoza, Laurita R. & Reyes, Clarissa & Elgo, Frances Rose & Aldeon, Melanie P., 2012. "Inequities in Noncommunicable Diseases," Discussion Papers DP 2012-04, Philippine Institute for Development Studies.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5523-:d:273886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.