IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i14p3957-d250274.html
   My bibliography  Save this article

Mechanism of Spatiotemporal Air Quality Response to Meteorological Parameters: A National-Scale Analysis in China

Author

Listed:
  • Zhi Qiao

    (Key Laboratory of Indoor Air Environment Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China)

  • Feng Wu

    (Center for Chinese Agricultural Policy, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Xinliang Xu

    (State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Jin Yang

    (School of Humanities and Economic Management, China University of Geosciences, Beijing 10083, China)

  • Luo Liu

    (Guangdong Province Engineering Research Center for Land Information Technology, The College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China)

Abstract

The air quality over China exhibits seasonal and regional variation, resulting from heterogeneity in industrialization, and is highly affected by variability in meteorological conditions. We performed the first national-scale exploration of the relationship between the Air Pollution Index (API) and multiple meteorological parameters in China, using partial correlation and hierarchical cluster analyses. Relative humidity, wind speed, and temperature were the dominant factors influencing air quality year-round, due to their significant effects on pollutant dispersion and/or transformation of pollutants. The response of the API to single or multiple meteorological factors varied among cities and seasons, and a regional clustering of response mechanisms was observed, particularly in winter. Clear north–south differentiation was detected in the mechanisms of API response to relative humidity and wind speed. These findings provide insight into the spatiotemporal variation in air quality sensitivity to meteorological conditions, which will be useful for implementing regional air pollution control strategies.

Suggested Citation

  • Zhi Qiao & Feng Wu & Xinliang Xu & Jin Yang & Luo Liu, 2019. "Mechanism of Spatiotemporal Air Quality Response to Meteorological Parameters: A National-Scale Analysis in China," Sustainability, MDPI, vol. 11(14), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3957-:d:250274
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/14/3957/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/14/3957/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingting Wang & Linjie Qin & Chao Dai & Zhen Wang & Chenqi Gong, 2023. "Heterogeneous Learning of Functional Clustering Regression and Application to Chinese Air Pollution Data," IJERPH, MDPI, vol. 20(5), pages 1-21, February.
    2. Chaoli Tang & Xinhua Tao & Yuanyuan Wei & Ziyue Tong & Fangzheng Zhu & Han Lin, 2022. "Analysis and Prediction of Wind Speed Effects in East Asia and the Western Pacific Based on Multi-Source Data," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    3. Ying Su & Chunyan Lu & Xiaoqing Lin & Lianxiu Zhong & Yibin Gao & Yifan Lei, 2020. "Analysis of Spatio-temporal Characteristics and Driving Forces of Air Quality in the Northern Coastal Comprehensive Economic Zone, China," Sustainability, MDPI, vol. 12(2), pages 1-23, January.
    4. Jianhui Qin & Suxian Wang & Linghui Guo & Jun Xu, 2020. "Spatial Association Pattern of Air Pollution and Influencing Factors in the Beijing–Tianjin–Hebei Air Pollution Transmission Channel: A Case Study in Henan Province," IJERPH, MDPI, vol. 17(5), pages 1-14, March.
    5. Nur Fariha Syaqina Zulkepli & Mohd Salmi Md Noorani & Fatimah Abdul Razak & Munira Ismail & Mohd Almie Alias, 2020. "Cluster Analysis of Haze Episodes Based on Topological Features," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    6. Thipsukon Khumsaeng & Thongchai Kanabkaew, 2021. "Measurement of Indoor Air Pollution in Bhutanese Households during Winter: An Implication of Different Fuel Uses," Sustainability, MDPI, vol. 13(17), pages 1-12, August.
    7. Hongya Niu & Chongchong Zhang & Wei Hu & Tafeng Hu & Chunmiao Wu & Sihao Hu & Luis F. O. Silva & Nana Gao & Xiaolei Bao & Jingsen Fan, 2022. "Air Quality Changes during the COVID-19 Lockdown in an Industrial City in North China: Post-Pandemic Proposals for Air Quality Improvement," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    8. Daroonwan Kamthonkiat & Juthasinee Thanyapraneedkul & Nithima Nuengjumnong & Sarawut Ninsawat & Kessinee Unapumnuk & Tuong Thuy Vu, 2021. "Identifying priority air pollution management areas during the burning season in Nan Province, Northern Thailand," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5865-5884, April.
    9. Abdullah Kaviani Rad & Redmond R. Shamshiri & Armin Naghipour & Seraj-Odeen Razmi & Mohsen Shariati & Foroogh Golkar & Siva K. Balasundram, 2022. "Machine Learning for Determining Interactions between Air Pollutants and Environmental Parameters in Three Cities of Iran," Sustainability, MDPI, vol. 14(13), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3957-:d:250274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.