IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i14p3944-d249980.html
   My bibliography  Save this article

Conjunctive Water Resources Management in Densely Urbanized Karst Areas: A Study in the Sete Lagoas Region, State of Minas Gerais, Brazil

Author

Listed:
  • Hugo Henrique Cardoso de Salis

    (Departamento de Geografia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6.627-Pampulha-CEP, Belo Horizonte 31270-901, Minas Gerais, Brazil)

  • Adriana Monteiro da Costa

    (Departamento de Geografia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6.627-Pampulha-CEP, Belo Horizonte 31270-901, Minas Gerais, Brazil)

  • Annika Künne

    (Geographic Information Science Group, Institute of Geography, Friedrich Schiller University, 07749 Jena, Germany)

  • Luís Filipe Sanches Fernandes

    (Centro de Investigação e Tecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, Ap 1013, 5001–801 Vila Real, Portugal)

  • Fernando António Leal Pacheco

    (Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Ap 1013, 5001–801 Vila Real, Portugal)

Abstract

Headwater catchments store valuable resources of quality water, but their hydraulic response is difficult to assess (model) because they are usually deprived of monitoring stations, namely hydrometric stations. This issue becomes even more pertinent because headwater catchments are ideal for the practice of conjunctive water resources management involving the supply of towns with groundwater and surface water, a solution that can be used to mitigate overexploitation of groundwater resources in densely urbanized and populated areas. In this study, a stepwise approach is presented whereby, in a first stage, a gauged basin was modeled for stream flow using the JAMS J2000 framework, with the purpose to obtain calibrated hydraulic parameters and ecological simulated stream flow records. Having validated the model through a comparison of simulated and measured flows, the simulated record was adjusted to the scale of an ungauged sub-basin, based on a new run of JAMS J2000 using the same hydraulic parameters. At this stage, a second validation of modeled data was accomplished through comparison of the downscaled flow rates with discharge rates assessed by field measurements of flow velocity and water column height. The modeled basin was a portion of Jequitiba River basin, while the enclosed sub-basin was the Marinheiro catchment (state of Minas Gerais, Brazil). The latter is a peri-urban watershed located in the vicinity of Sete Lagoas town, a densely urbanized and populated area. This town uses 15.5 hm 3 year −1 of karst groundwater for public water supply, but the renewable resources were estimated to be 6.3 hm 3 year −1 . The impairment between abstraction and renewable resources lasts for decades, and for that reason the town experiences systemic water table declines and sinkhole development. The present study claims that the storage of quality water in the Marinheiro catchment, in a dam reservoir, would help alleviate the depletion of groundwater resources in the karst aquifer because this catchment could deliver 4.73 hm 3 year −1 of quality surface water to the municipality without endangering ecologic flows. The construction of a small dam at the outlet of Marinheiro catchment could also improve aquifer recharge. Presently, the annual recharge in this catchment approaches 1.47 hm 3 but could be much larger if the small dam was installed in the water course and the captured stream water managed properly.

Suggested Citation

  • Hugo Henrique Cardoso de Salis & Adriana Monteiro da Costa & Annika Künne & Luís Filipe Sanches Fernandes & Fernando António Leal Pacheco, 2019. "Conjunctive Water Resources Management in Densely Urbanized Karst Areas: A Study in the Sete Lagoas Region, State of Minas Gerais, Brazil," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3944-:d:249980
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/14/3944/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/14/3944/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Álvarez, X. & Valero, E. & Santos, R.M.B. & Varandas, S.G.P. & Sanches Fernandes, L.F. & Pacheco, F.A.L., 2017. "Anthropogenic nutrients and eutrophication in multiple land use watersheds: Best management practices and policies for the protection of water resources," Land Use Policy, Elsevier, vol. 69(C), pages 1-11.
    2. Furlong, Casey & Jegatheesan, Jega & Currell, Matthew & Iyer-Raniga, Usha & Khan, Tehmina & Ball, Andrew S., 2019. "Is the global public willing to drink recycled water? A review for researchers and practitioners," Utilities Policy, Elsevier, vol. 56(C), pages 53-61.
    3. Křeček, Josef & Haigh, Martin, 2019. "Land use policy in headwater catchments," Land Use Policy, Elsevier, vol. 80(C), pages 410-414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marianno de Olivera, Laís Caroline & de Mendonça, Gislaine Costa & Araújo Costa, Renata Cristina & Leite de Camargo, Regina Aparecida & Fernandes, Luís Filipe Sanches & Pacheco, Fernando António Leal , 2023. "Impacts of urban sprawl in the Administrative Region of Ribeirão Preto (Brazil) and measures to restore improved landscapes," Land Use Policy, Elsevier, vol. 124(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Soares & Daniela Terêncio & Luís Fernandes & João Machado & Fernando A.L. Pacheco, 2019. "The Potential of Small Dams for Conjunctive Water Management in Rural Municipalities," IJERPH, MDPI, vol. 16(7), pages 1-17, April.
    2. Muhammed Ernur Akıner & İlknur Akıner, 2021. "Water Quality Analysis of Drinking Water Resource Lake Sapanca and Suggestions for the Solution of the Pollution Problem in the Context of Sustainable Environment Approach," Sustainability, MDPI, vol. 13(7), pages 1-13, April.
    3. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    4. Saleh Al Arni & Jamal Amous & Djamel Ghernaout, 2019. "On the Perspective of Applying of a New Method for Wastewater Treatment Technology: Modification of the Third Traditional Stage with Two Units, One by Cultivating Microalgae and Another by Solar Vapor," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 16(2), pages 54-57, January.
    5. James, Christina Anne & Kavanagh, Marie & Manton, Carl & Soar, Jeffrey, 2023. "Revisiting recycled water for the next drought; a case study of South East Queensland, Australia," Utilities Policy, Elsevier, vol. 84(C).
    6. Hu, Han-fen & Krishen, Anjala S. & Barnes, Jesse, 2023. "Through narratives we learn: Exploring knowledge-building as a marketing strategy for prosocial water reuse," Journal of Business Research, Elsevier, vol. 158(C).
    7. Xiao Zhang & Xiaomin Chen & Wanshun Zhang & Hong Peng & Gaohong Xu & Yanxin Zhao & Zhenling Shen, 2022. "Impact of Land Use Changes on the Surface Runoff and Nutrient Load in the Three Gorges Reservoir Area, China," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    8. Cristina Gómez-Román & Luisa Lima & Sergio Vila-Tojo & Andrea Correa-Chica & Juan Lema & José-Manuel Sabucedo, 2020. "“Who Cares?”: The Acceptance of Decentralized Wastewater Systems in Regions without Water Problems," IJERPH, MDPI, vol. 17(23), pages 1-16, December.
    9. Puertes, Cristina & Bautista, Inmaculada & Lidón, Antonio & Francés, Félix, 2021. "Best management practices scenario analysis to reduce agricultural nitrogen loads and sediment yield to the semiarid Mar Menor coastal lagoon (Spain)," Agricultural Systems, Elsevier, vol. 188(C).
    10. Bennich, Amelie & Engwall, Mats & Nilsson, David, 2023. "Operating in the shadowland: Why water utilities fail to manage decaying infrastructure," Utilities Policy, Elsevier, vol. 82(C).
    11. Sorin Avram & Corina Cipu & Ana-Maria Corpade & Carmen Adriana Gheorghe & Nicolae Manta & Mihaita-Iulian Niculae & Ionuţ Silviu Pascu & Róbert Eugen Szép & Steliana Rodino, 2021. "GIS-Based Multi-Criteria Analysis Method for Assessment of Lake Ecosystems Degradation—Case Study in Romania," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    12. Timothy P. Neher & Michelle L. Soupir & Rameshwar S. Kanwar, 2021. "Lake Atitlan: A Review of the Food, Energy, and Water Sustainability of a Mountain Lake in Guatemala," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    13. Gabriel Medina & Catherine Isley & J. Arbuckle, 2021. "Promoting sustainable agriculture: Iowa stakeholders’ perspectives on the US Farm Bill conservation programs," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 173-194, January.
    14. Adriana Monteiro da Costa & Hugo Henrique Cardoso de Salis & João Hebert Moreira Viana & Fernando António Leal Pacheco, 2019. "Groundwater Recharge Potential for Sustainable Water Use in Urban Areas of the Jequitiba River Basin, Brazil," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    15. Jesse L. Barnes & Anjala S. Krishen & Han-fen Hu, 2021. "Untapped Knowledge about Water Reuse: the Roles of Direct and Indirect Educational Messaging," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2601-2615, June.
    16. Hualou Long & Yingnan Zhang & Li Ma & Shuangshuang Tu, 2021. "Land Use Transitions: Progress, Challenges and Prospects," Land, MDPI, vol. 10(9), pages 1-20, August.
    17. Hugo Henrique Cardoso de Salis & Adriana Monteiro da Costa & João Herbert Moreira Vianna & Marysol Azeneth Schuler & Annika Künne & Luís Filipe Sanches Fernandes & Fernando António Leal Pacheco, 2019. "Hydrologic Modeling for Sustainable Water Resources Management in Urbanized Karst Areas," IJERPH, MDPI, vol. 16(14), pages 1-19, July.
    18. Ruiz-Rosa, Inés & García-Rodríguez, Francisco J. & Antonova, Natalia, 2020. "Developing a methodology to recover the cost of wastewater reuse: A proposal based on the polluter pays principle," Utilities Policy, Elsevier, vol. 65(C).
    19. Song, Malin & Xie, Qianjiao & Shahbaz, Muhammad & Yao, Xin, 2023. "Economic growth and security from the perspective of natural resource assets," Resources Policy, Elsevier, vol. 80(C).
    20. Jie Xu & Zheng Zhou & Jie Chen & Haihua Zhuo & Jie Ma & Yunbing Liu, 2022. "Spatiotemporal Patterns in pCO 2 and Nutrient Concentration: Implications for the CO 2 Variations in a Eutrophic Lake," IJERPH, MDPI, vol. 19(19), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3944-:d:249980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.