IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3701-d246067.html
   My bibliography  Save this article

Urban Rail Timetable Optimization to Improve Operational Efficiency with Flexible Routing Plans: A Nonlinear Integer Programming Model

Author

Listed:
  • Qiuchi Xue

    (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China)

  • Xin Yang

    (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China)

  • Jianjun Wu

    (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China)

  • Huijun Sun

    (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China)

  • Haodong Yin

    (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China)

  • Yunchao Qu

    (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China)

Abstract

At present, most urban rail transit systems adopt an operation mode with a single long routing. The departure frequency is determined by the maximum section passenger flow. However, when the passenger flow varies greatly within different sections, this mode will lead to a low load factor in some sections, resulting in a waste of capacity. In view of this situation, this paper develops a nonlinear integer programming model to determine an optimal timetable with a balanced scheduling mode, where the wasted capacity at a constant departure frequency can be reduced with a slight increase in passenger waiting time. Then, we simplify the original model into a single-objective integer optimization model through normalization. A genetic algorithm is designed to find the optimal solution. Finally, a numerical example is presented based on real-world passenger and operation data from Beijing Metro Line 4. The results show that the double-routing optimization model can reduce wasted capacity by 9.5%, with a 4.5% increase in passenger waiting time, which illustrates the effectiveness of this optimization model.

Suggested Citation

  • Qiuchi Xue & Xin Yang & Jianjun Wu & Huijun Sun & Haodong Yin & Yunchao Qu, 2019. "Urban Rail Timetable Optimization to Improve Operational Efficiency with Flexible Routing Plans: A Nonlinear Integer Programming Model," Sustainability, MDPI, vol. 11(13), pages 1-26, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3701-:d:246067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3701/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3701/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shijin Wang & Xiaodong Wang & Xin Liu & Jianbo Yu, 2018. "A Bi-Objective Vehicle-Routing Problem with Soft Time Windows and Multiple Depots to Minimize the Total Energy Consumption and Customer Dissatisfaction," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    2. Luis Cadarso & Ángel Marín, 2012. "Integration of timetable planning and rolling stock in rapid transit networks," Annals of Operations Research, Springer, vol. 199(1), pages 113-135, October.
    3. Chang, Yu-Hern & Yeh, Chung-Hsing & Shen, Ching-Cheng, 2000. "A multiobjective model for passenger train services planning: application to Taiwan's high-speed rail line," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 91-106, February.
    4. Luca D’Acierno & Marilisa Botte, 2018. "A Passenger-Oriented Optimization Model for Implementing Energy-Saving Strategies in Railway Contexts," Energies, MDPI, vol. 11(11), pages 1-25, October.
    5. D’Acierno, Luca & Gallo, Mariano & Montella, Bruno, 2012. "An Ant Colony Optimisation algorithm for solving the asymmetric traffic assignment problem," European Journal of Operational Research, Elsevier, vol. 217(2), pages 459-469.
    6. Szeto, W.Y. & Wu, Yongzhong, 2011. "A simultaneous bus route design and frequency setting problem for Tin Shui Wai, Hong Kong," European Journal of Operational Research, Elsevier, vol. 209(2), pages 141-155, March.
    7. Zhiyuan Huang & Ruihua Xu & Wei (David) Fan & Feng Zhou & Wei Liu, 2019. "Service-Oriented Load Balancing Approach to Alleviating Peak-Hour Congestion in a Metro Network Based on Multi-Path Accessibility," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    8. David Canca & Eva Barrena & Gilbert Laporte & Francisco A. Ortega, 2016. "A short-turning policy for the management of demand disruptions in rapid transit systems," Annals of Operations Research, Springer, vol. 246(1), pages 145-166, November.
    9. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2010. "A meta-heuristic approach for solving the Urban Network Design Problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 144-157, February.
    10. Delle Site, Paolo & Filippi, Francesco, 1998. "Service optimization for bus corridors with short-turn strategies and variable vehicle size," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(1), pages 19-38, January.
    11. Xueqiao Yu & Maoxiang Lang & Yang Gao & Kai Wang & Ching-Hsia Su & Sang-Bing Tsai & Mingkun Huo & Xiao Yu & Shiqi Li, 2018. "An Empirical Study on the Design of China High-Speed Rail Express Train Operation Plan—From a Sustainable Transport Perspective," Sustainability, MDPI, vol. 10(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ge Song & Chao Dai & Qian Tan & Shan Zhang, 2019. "Agricultural Water Management Model Based on Grey Water Footprints under Uncertainty and its Application," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    2. Yang, Xin & Xue, Qiuchi & Ding, Meiling & Wu, Jianjun & Gao, Ziyou, 2021. "Short-term prediction of passenger volume for urban rail systems: A deep learning approach based on smart-card data," International Journal of Production Economics, Elsevier, vol. 231(C).
    3. Zhang, Lang & He, Deqiang & He, Yan & Liu, Bin & Chen, Yanjun & Shan, Sheng, 2022. "Real-time energy saving optimization method for urban rail transit train timetable under delay condition," Energy, Elsevier, vol. 258(C).
    4. Xuan Li & Toshiyuki Yamamoto & Tao Yan & Lili Lu & Xiaofei Ye, 2020. "First Train Timetabling for Urban Rail Transit Networks with Maximum Passenger Transfer Satisfaction," Sustainability, MDPI, vol. 12(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Jiawei & Gao, Yuan & Li, Shukai & Liu, Pei & Yang, Lixing, 2022. "Integrated optimization of train timetable, rolling stock assignment and short-turning strategy for a metro line," European Journal of Operational Research, Elsevier, vol. 301(3), pages 855-874.
    2. Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
    3. Feng, Tao & Lusby, Richard M. & Zhang, Yongxiang & Peng, Qiyuan, 2024. "Integrating train service route design with passenger flow allocation for an urban rail transit line," European Journal of Operational Research, Elsevier, vol. 313(1), pages 146-170.
    4. Elnaz Miandoabchi & Reza Farahani & Wout Dullaert & W. Szeto, 2012. "Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks," Networks and Spatial Economics, Springer, vol. 12(3), pages 441-480, September.
    5. Repolho, Hugo M. & Church, Richard L. & Antunes, António P., 2016. "Optimizing station location and fleet composition for a high-speed rail line," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 437-452.
    6. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    7. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    8. David Canca & Eva Barrena & Gilbert Laporte & Francisco A. Ortega, 2016. "A short-turning policy for the management of demand disruptions in rapid transit systems," Annals of Operations Research, Springer, vol. 246(1), pages 145-166, November.
    9. Gkiotsalitis, K. & Schmidt, M.E. & van der Hurk, E., 2021. "Subline frequency setting for autonomous minibusses under demand uncertainty," ERIM Report Series Research in Management ERS-2021-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Canca, David & Andrade-Pineda, José Luis & De-Los-Santos, Alicia & González-R, Pedro Luis, 2021. "A quantitative approach for the long-term assessment of Railway Rapid Transit network construction or expansion projects," European Journal of Operational Research, Elsevier, vol. 294(2), pages 604-621.
    11. Svetla Stoilova, 2020. "An Integrated Multi-Criteria and Multi-Objective Optimization Approach for Establishing the Transport Plan of Intercity Trains," Sustainability, MDPI, vol. 12(2), pages 1-24, January.
    12. Nayan, Ashish & Wang, David Z.W., 2017. "Optimal bus transit route packaging in a privatized contracting regime," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 146-157.
    13. David Canca & Belén Navarro-Carmona & Gabriel Villa & Alejandro Zarzo, 2023. "A Multilayer Network Approach for the Bimodal Bus–Pedestrian Line Planning Problem," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    14. Amirali Zarrinmehr & Mahmoud Saffarzadeh & Seyedehsan Seyedabrishami & Yu Marco Nie, 2016. "A path-based greedy algorithm for multi-objective transit routes design with elastic demand," Public Transport, Springer, vol. 8(2), pages 261-293, September.
    15. Eun Hak Lee & Inmook Lee & Shin-Hyung Cho & Seung-Young Kho & Dong-Kyu Kim, 2019. "A Travel Behavior-Based Skip-Stop Strategy Considering Train Choice Behaviors Based on Smartcard Data," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    16. Jin Qin & Wenxuan Qu & Xuanke Wu & Yijia Zeng, 2019. "Differential Pricing Strategies of High Speed Railway Based on Prospect Theory: An Empirical Study from China," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    17. Hamid, Faiz & Agarwal, Yogesh K., 2024. "Train stop scheduling problem: An exact approach using valid inequalities and polar duality," European Journal of Operational Research, Elsevier, vol. 313(1), pages 207-224.
    18. Fuentes, Manuel & Cadarso, Luis & Marín, Ángel, 2019. "A hybrid model for crew scheduling in rail rapid transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 248-265.
    19. Seda Yanık & Salim Yılmaz, 2023. "Optimal design of a bus route with short-turn services," Public Transport, Springer, vol. 15(1), pages 169-197, March.
    20. Ahern, Zeke & Paz, Alexander & Corry, Paul, 2022. "Approximate multi-objective optimization for integrated bus route design and service frequency setting," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 1-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3701-:d:246067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.