IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3510-d243221.html
   My bibliography  Save this article

A Case Study on Large Deformation Failure Mechanism and Control Techniques for Soft Rock Roadways in Tectonic Stress Areas

Author

Listed:
  • Guangzhe Xue

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China)

  • Chao Gu

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China
    School of Coal Engineering, Shanxi Datong University, Datong 037003, China)

  • Xinqiu Fang

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China)

  • Tao Wei

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Large deformation and failure of soft rock are pressing problems in the mining practice. This paper provides a case study on failure mechanisms and support approaches for a water-rich soft rock roadway in tectonic stress areas of the Wangzhuang coal mine, China. Mechanic properties of rock mass related to the roadway are calibrated via a geological strength index method (GSI), based on which a corresponding numerical simulation model is established in the Universal Discrete Element Code (UDEC) software. The failure mechanism of the roadway under water-saturating and weathering conditions is revealed by field tests and numerical simulation. It is found that the stress evolution and crack development are affected by weathering and horizontal tectonic stresses. The roadway roof and floor suffer from high stress concentration and continuous cracking, and are consequently seen with rock failure, strength weakening, and pressure relief. Unfortunately, the current support system fails to restrain rock weathering and strength weakening, and the roadway is found with serious floor heave, roof subsidence, and large asymmetric deformation. Accordingly, a new combined support system of “bolt–cable–mesh–shotcrete + grouting” is proposed. Moreover, numerical simulation and field testing are conducted to validate the feasibility and effectiveness of the proposed approach, the results of which demonstrate the capacity of the proposed new support method to perfectly control the surrounding rock. Findings of this research can provide valuable references for support engineering in the soft rock roadway under analogous geological conditions.

Suggested Citation

  • Guangzhe Xue & Chao Gu & Xinqiu Fang & Tao Wei, 2019. "A Case Study on Large Deformation Failure Mechanism and Control Techniques for Soft Rock Roadways in Tectonic Stress Areas," Sustainability, MDPI, vol. 11(13), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3510-:d:243221
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3510/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3510/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Renshu Yang & Qinghai Li & Qing Li & Xianlei Zhu, 2017. "Assessment of Bearing Capacity and Stiffness in New Steel Sets Used for Roadway Support in Coal Mines," Energies, MDPI, vol. 10(10), pages 1-16, October.
    2. Xiaojie Yang & Eryu Wang & Yajun Wang & Yubing Gao & Pu Wang, 2018. "A Study of the Large Deformation Mechanism and Control Techniques for Deep Soft Rock Roadways," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengquan He & Le Gao & Bin Zhao & Xueqiu He & Zhenlei Li & Dazhao Song & Tuo Chen & Yanran Ma & Feng Shen, 2023. "Research on Deformation and Failure Law of the Gob-Side Roadway in Close Extra-Thick Coal Seams," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    2. Wadslin Frenelus & Hui Peng & Jingyu Zhang, 2022. "An Insight from Rock Bolts and Potential Factors Influencing Their Durability and the Long-Term Stability of Deep Rock Tunnels," Sustainability, MDPI, vol. 14(17), pages 1-35, September.
    3. Haijun Yu & Honglin Liu & Yang Xia & Mingcun Zhang & Yinjian Hang & Wenjie Luo, 2023. "A Study on the Deformation Mechanism of the Rock Surrounding a Weakly Cemented Cross-Layer Roadway, under Tectonic Stress," Energies, MDPI, vol. 16(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai Wu & Qian Jia & Weijun Wang & Nong Zhang & Yiming Zhao, 2021. "Experimental Test on Nonuniform Deformation in the Tilted Strata of a Deep Coal Mine," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    2. Xiaojie Yang & Eryu Wang & Xingen Ma & Guofeng Zhang & Ruifeng Huang & Haopeng Lou, 2019. "A Case Study on Optimization and Control Techniques for Entry Stability in Non-Pillar Longwall Mining," Energies, MDPI, vol. 12(3), pages 1-17, January.
    3. Eryu Wang & Guangbo Chen & Xiaojie Yang & Guofeng Zhang & Wenbin Guo, 2020. "Study on the Failure Mechanism for Coal Roadway Stability in Jointed Rock Mass Due to the Excavation Unloading Effect," Energies, MDPI, vol. 13(10), pages 1-19, May.
    4. Dong Wang & Yujing Jiang & Xiaoming Sun & Hengjie Luan & Hui Zhang, 2019. "Nonlinear Large Deformation Mechanism and Stability Control of Deep Soft Rock Roadway: A Case Study in China," Sustainability, MDPI, vol. 11(22), pages 1-20, November.
    5. Jun Yang & Hongyu Wang & Yajun Wang & Binhui Liu & Shilin Hou & Yu Cheng, 2019. "Stability Analysis of the Entry in a New Mining Approach Influenced by Roof Fracture Position," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    6. Qingxian Huang & Xufeng Wang & Xuyang Chen & Dongdong Qin & Zechao Chang, 2020. "Evolution of Interior and Exterior Bearing Structures of the Deep-Soft-Rock Roadway: From Theory to Field Test in the Pingdingshan Mining Area," Energies, MDPI, vol. 13(17), pages 1-19, August.
    7. Xingen Ma & Manchao He & Jiandong Sun & Haohao Wang & Xiaoyu Liu & Enze Zhen, 2018. "Neural Network of Roof Cutting Blasting Parameters Based on Mines with Different Roof Conditions," Energies, MDPI, vol. 11(12), pages 1-22, December.
    8. Qizhi Chen & Baoping Zou & Zhigang Tao & Manchao He & Bo Hu, 2023. "Construction and Application of an Intelligent Roof Stability Evaluation System for the Roof-Cutting Non-Pillar Mining Method," Sustainability, MDPI, vol. 15(3), pages 1-17, February.
    9. Krzysztof Skrzypkowski & Krzysztof Zagórski & Anna Zagórska & Derek B. Apel & Jun Wang & Huawei Xu & Lijie Guo, 2022. "Choice of the Arch Yielding Support for the Preparatory Roadway Located near the Fault," Energies, MDPI, vol. 15(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3510-:d:243221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.