IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i12p3370-d240872.html
   My bibliography  Save this article

Improvement of Human Thermal Comfort by Optimizing the Airflow Induced by a Ceiling Fan

Author

Listed:
  • Hsin-Hung Lin

    (Department of Creative Product Design, Asia University and Department of Medical Research, China Medical University Hospital, Taichung City 41354, Taiwan)

Abstract

The purpose of this study is to investigate the relationship between the greenhouse effect and the overuse of electricity and energy under a sustainable environment. The goal is to investigate the airflow that is induced by ceiling fans, by measuring human body temperature. In the simulation model, the thermal plume phenomenon is observed in the indoor environment. By changing the ceiling fan parameters, the influence of the airflow is investigated by practical measurement of human body temperature. The indoor convective heat transfer is enhanced by installing a ceiling fan, which affects the whole body thermal sensation (WBTS). Different scenarios are reviewed by adjusting the fan speed in the simulation model, so that the distribution of human body temperature can be determined. By modeling the blade plane of the ceiling fan, the airflow characteristics can be determined by making the simulation model rotate in order to assess the thermal comfort characteristics. As the ceiling fan generates circulation within the domain, the thermal comfort is significantly enhanced. By keeping a reasonable thermal comfort level, a higher room temperature or a higher heat load is allowed so that a sustainable environment can be maintained without affecting the indoor thermal comfort or the efficiency of energy usage.

Suggested Citation

  • Hsin-Hung Lin, 2019. "Improvement of Human Thermal Comfort by Optimizing the Airflow Induced by a Ceiling Fan," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3370-:d:240872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/12/3370/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/12/3370/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holtedahl, Pernille & Joutz, Frederick L., 2004. "Residential electricity demand in Taiwan," Energy Economics, Elsevier, vol. 26(2), pages 201-224, March.
    2. Schmidt, Kersten & Patterson, Dean J., 2001. "Performance results for a high efficiency tropical ceiling fan and comparisons with conventional fans," Renewable Energy, Elsevier, vol. 22(1), pages 169-176.
    3. Ferro, L.M.C. & Gato, L.M.C. & Falcão, A.F.O., 2011. "Design of the rotor blades of a mini hydraulic bulb-turbine," Renewable Energy, Elsevier, vol. 36(9), pages 2395-2403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teen-Hang Meen & Yusuke Matsumoto & Ming-Shyan Wang, 2020. "Selected Papers From 2019 IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (IEEE ECBIOS 2019)," Sustainability, MDPI, vol. 12(1), pages 1-5, January.
    2. Hsin-Hung Lin & Jui-Hung Cheng, 2020. "A Study of the Simulation and Analysis of the Flow Field of Natural Convection for a Container House," Sustainability, MDPI, vol. 12(23), pages 1-28, November.
    3. Sriraj Gokarakonda & Christoph van Treeck & Rajan Rawal, 2022. "Investigating Optimum Cooling Set Point Temperature and Air Velocity for Thermal Comfort and Energy Conservation in Mixed-Mode Buildings in India," Energies, MDPI, vol. 15(6), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziramba, Emmanuel, 2008. "The demand for residential electricity in South Africa," Energy Policy, Elsevier, vol. 36(9), pages 3460-3466, September.
    2. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    3. Liddle, Brantley, 2013. "Population, Affluence, and Environmental Impact Across Development: Evidence from Panel Cointegration Modeling," MPRA Paper 52088, University Library of Munich, Germany.
    4. Agarwal, Sumit & Satyanarain, Rengarajan & Sing, Tien Foo & Vollmer, Derek, 2016. "Effects of construction activities on residential electricity consumption: Evidence from Singapore's public housing estates," Energy Economics, Elsevier, vol. 55(C), pages 101-111.
    5. Imen Gam & Jaleleddine Ben Rejeb, 2012. "How Can We Assess the Relation Between Equipment, Price and Electricity Demand in Tunisia?," International Journal of Energy Economics and Policy, Econjournals, vol. 2(3), pages 159-166.
    6. Lee Lian Ivy-Yap & Hussain Ali Bekhet, 2015. "Examining the Feedback Response of Residential Electricity Consumption towards Changes in its Determinants: Evidence from Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 772-781.
    7. Sotoude Haghighi, M.H. & Mirghavami, S.M. & Chini, S.F. & Riasi, A., 2019. "Developing a method to design and simulation of a very low head axial turbine with adjustable rotor blades," Renewable Energy, Elsevier, vol. 135(C), pages 266-276.
    8. Tongam Sihol Nababan, 2015. "Analysis of Household Characteristics Affecting the Demand of PLN’s Electricity. An Observation on Small Households in City of Medan, Indonesia," Academic Journal of Economic Studies, Faculty of Finance, Banking and Accountancy Bucharest,"Dimitrie Cantemir" Christian University Bucharest, vol. 1(2), pages 79-92, June.
    9. Zamanipour, Behzad & Ghadaksaz, Hesam & Keppo, Ilkka & Saboohi, Yadollah, 2023. "Electricity supply and demand dynamics in Iran considering climate change-induced stresses," Energy, Elsevier, vol. 263(PE).
    10. Aisha Kolawole & Sola Adesola & Glauco De Vita, 2017. "A Disaggregated Analysis of Energy Demand in Sub-Saharan Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 224-235.
    11. Karanfil, Fatih & Li, Yuanjing, 2015. "Electricity consumption and economic growth: Exploring panel-specific differences," Energy Policy, Elsevier, vol. 82(C), pages 264-277.
    12. Loi, Tian Sheng Allan & Loo, Soh Leng, 2016. "The impact of Singapore’s residential electricity conservation efforts and the way forward. Insights from the bounds testing approach," Energy Policy, Elsevier, vol. 98(C), pages 735-743.
    13. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    14. Seixas, M. & Melício, R. & Mendes, V.M.F. & Couto, C., 2016. "Blade pitch control malfunction simulation in a wind energy conversion system with MPC five-level converter," Renewable Energy, Elsevier, vol. 89(C), pages 339-350.
    15. Brantley Liddle, 2017. "Accounting for Nonlinearity, Asymmetry, Heterogeneity, and Cross-Sectional Dependence in Energy Modeling: US State-Level Panel Analysis," Economies, MDPI, vol. 5(3), pages 1-11, August.
    16. Xie, Lunyu & Yan, Haosheng & Zhang, Shuhan & Wei, Chu, 2020. "Does urbanization increase residential energy use? Evidence from the Chinese residential energy consumption survey 2012," China Economic Review, Elsevier, vol. 59(C).
    17. Kuang, Yunming & Lin, Boqiang, 2021. "Performance of tiered pricing policy for residential natural gas in China: Does the income effect matter?," Applied Energy, Elsevier, vol. 304(C).
    18. Wang, Na & Fu, Xiaodong & Wang, Shaobin & Yang, Hao & Li, Zhen, 2022. "Convergence characteristics and distribution patterns of residential electricity consumption in China: An urban-rural gap perspective," Energy, Elsevier, vol. 254(PB).
    19. Fedoseeva, Svetlana & Zeidan, Rodrigo, 2018. "How (a)symmetric is the response of import demand to changes in its determinants? Evidence from European energy imports," Energy Economics, Elsevier, vol. 69(C), pages 379-394.
    20. Knaut, Andreas & Paulus, Simon, 2016. "When are consumers responding to electricity prices? An hourly pattern of demand elasticity," EWI Working Papers 2016-7, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 16 Mar 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3370-:d:240872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.