IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp266-276.html
   My bibliography  Save this article

Developing a method to design and simulation of a very low head axial turbine with adjustable rotor blades

Author

Listed:
  • Sotoude Haghighi, M.H.
  • Mirghavami, S.M.
  • Chini, S.F.
  • Riasi, A.

Abstract

Very low head (VLH) axial hydraulic turbines classified as micro-hydropower plants are capable of harvesting energy from sites with elevations below 4.5 m. The VLH turbine output power can be controlled by varying the rotational speed and the runner blade opening angles. In this paper, a design method for the VLH runner blade is developed. The numerical simulation of the designed system is presented and validated against the experimental data of an industrial prototype. The procedure is started by determining the velocity components and angles at the inlet and outlet of 2D radial sections, followed by choosing a hydrofoil for each radial section and calculating the hydrodynamic coefficients. The stagger angle and the chord-length of the section are computed using a MATLAB code coupled with XFoil. The multi-section product of 3D spherical radial sections in ANSYS TurboGrid 15.0 meshing tool forms the runner blade and the guide vane. Importing the generated structured grid into ANSYS CFX 15.0 solver, the RANS equations are solved using the SST turbulence model to capture the turbulent structures. The simplified Rayleigh-Plesset equation for bubble growth rate in the homogenous two-phase model is applied to study the cavitation phenomenon for different states of runner opening angles and rotational speeds. The maximum hydraulic efficiencies for most of the runner positions (at constant angular velocity of 40 rpm) are more than 80%. We demonstrate the effects of runner blade opening angle and the turbine rotational speed on the hydraulic efficiency curves and turbine efficiency hill chart. The cavitation simulation demonstrates leading edge and tip gap cavitation in some off-design points at different blade opening angles.

Suggested Citation

  • Sotoude Haghighi, M.H. & Mirghavami, S.M. & Chini, S.F. & Riasi, A., 2019. "Developing a method to design and simulation of a very low head axial turbine with adjustable rotor blades," Renewable Energy, Elsevier, vol. 135(C), pages 266-276.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:266-276
    DOI: 10.1016/j.renene.2018.12.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118314551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.12.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yuning & Liu, Kaihua & Xian, Haizhen & Du, Xiaoze, 2018. "A review of methods for vortex identification in hydroturbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1269-1285.
    2. Yabin Liu & Lei Tan & Yue Hao & Yun Xu, 2017. "Energy Performance and Flow Patterns of a Mixed-Flow Pump with Different Tip Clearance Sizes," Energies, MDPI, vol. 10(2), pages 1-15, February.
    3. Hao, Yue & Tan, Lei, 2018. "Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 368-376.
    4. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    5. Gohil, Pankaj P. & Saini, R.P., 2015. "Effect of temperature, suction head and flow velocity on cavitation in a Francis turbine of small hydro power plant," Energy, Elsevier, vol. 93(P1), pages 613-624.
    6. Paish, Oliver, 2002. "Small hydro power: technology and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 537-556, December.
    7. Ferro, L.M.C. & Gato, L.M.C. & Falcão, A.F.O., 2011. "Design of the rotor blades of a mini hydraulic bulb-turbine," Renewable Energy, Elsevier, vol. 36(9), pages 2395-2403.
    8. Alexander, K.V. & Giddens, E.P. & Fuller, A.M., 2009. "Axial-flow turbines for low head microhydro systems," Renewable Energy, Elsevier, vol. 34(1), pages 35-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sotoude Haghighi, Mohammad Hadi & Mirghavami, Seyed Mohammad & Ghorani, Mohammad Mahdi & Riasi, Alireza & Chini, Seyed Farshid, 2020. "A numerical study on the performance of a superhydrophobic coated very low head (VLH) axial hydraulic turbine using entropy generation method," Renewable Energy, Elsevier, vol. 147(P1), pages 409-422.
    2. Ohiemi, Israel Enema & Sunsheng, Yang & Singh, Punit & Li, Yanjun & Osman, Fareed, 2023. "Evaluation of energy loss in a low-head axial flow turbine under different blade numbers using entropy production method," Energy, Elsevier, vol. 274(C).
    3. Shamsuddeen, Mohamed Murshid & Ma, Sang-Bum & Park, No-Hyun & Kim, Kyung Min & Kim, Jin-Hyuk, 2023. "Design analysis and optimization of a hydraulic gate turbine for power production from ultra-low head sites," Energy, Elsevier, vol. 275(C).
    4. Shamsuddeen, Mohamed Murshid & Park, Jungwan & Choi, Young-Seok & Kim, Jin-Hyuk, 2020. "Unsteady multi-phase cavitation analysis on the effect of anti-cavity fin installed on a Kaplan turbine runner," Renewable Energy, Elsevier, vol. 162(C), pages 861-876.
    5. Yang, Sun Sheng & Zhao, Erce & Fang, Tian & Kesharwani, Siddhi & Chaudhary, Shubham & Singh, Punit, 2023. "Towards an optimum pitch to chord ratio and establishing its scaling effects in low head Kaplan propellers," Renewable Energy, Elsevier, vol. 204(C), pages 750-772.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    2. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    3. Laghari, J.A. & Mokhlis, H. & Bakar, A.H.A. & Mohammad, Hasmaini, 2013. "A comprehensive overview of new designs in the hydraulic, electrical equipments and controllers of mini hydro power plants making it cost effective technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 279-293.
    4. Yu Song & Honggang Fan & Wei Zhang & Zhifeng Xie, 2019. "Flow Characteristics in Volute of a Double-Suction Centrifugal Pump with Different Impeller Arrangements," Energies, MDPI, vol. 12(4), pages 1-15, February.
    5. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump," Renewable Energy, Elsevier, vol. 139(C), pages 1159-1175.
    6. Liu, Yabin & Han, Yadong & Tan, Lei & Wang, Yuming, 2020. "Blade rotation angle on energy performance and tip leakage vortex in a mixed flow pump as turbine at pump mode," Energy, Elsevier, vol. 206(C).
    7. Yabin Liu & Lei Tan & Binbin Wang, 2018. "A Review of Tip Clearance in Propeller, Pump and Turbine," Energies, MDPI, vol. 11(9), pages 1-30, August.
    8. Shi, Guangtai & Liu, Zongku & Xiao, Yexiang & Yang, Hong & Li, Helin & Liu, Xiaobing, 2020. "Effect of the inlet gas void fraction on the tip leakage vortex in a multiphase pump," Renewable Energy, Elsevier, vol. 150(C), pages 46-57.
    9. Jiyun, Du & Hongxing, Yang & Zhicheng, Shen & Xiaodong, Guo, 2018. "Development of an inline vertical cross-flow turbine for hydropower harvesting in urban water supply pipes," Renewable Energy, Elsevier, vol. 127(C), pages 386-397.
    10. Liu, Yabin & Tan, Lei, 2020. "Method of T shape tip on energy improvement of a hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 149(C), pages 42-54.
    11. Liu, Yabin & Tan, Lei, 2020. "Influence of C groove on suppressing vortex and cavitation for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 148(C), pages 907-922.
    12. John, Bony & Thomas, Rony N. & Varghese, James, 2020. "Integration of hydrokinetic turbine-PV-battery standalone system for tropical climate condition," Renewable Energy, Elsevier, vol. 149(C), pages 361-373.
    13. Han, Yadong & Tan, Lei, 2020. "Influence of rotating speed on tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 162(C), pages 144-150.
    14. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    15. Yang, Jiangming & Wu, Huijun & Xu, Xinhua & Huang, Gongsheng & Xu, Tao & Guo, Sitong & Liang, Yuying, 2019. "Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency," Renewable Energy, Elsevier, vol. 138(C), pages 445-457.
    16. Shi, Guangtai & Liu, Zongku & Xiao, Yexiang & Li, Helin & Liu, Xiaobing, 2020. "Tip leakage vortex trajectory and dynamics in a multiphase pump at off-design condition," Renewable Energy, Elsevier, vol. 150(C), pages 703-711.
    17. Hao, Yue & Tan, Lei, 2018. "Symmetrical and unsymmetrical tip clearances on cavitation performance and radial force of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 127(C), pages 368-376.
    18. Erkan, Onur & Özkan, Musa & Karakoç, T. Hikmet & Garrett, Stephen J. & Thomas, Peter J., 2020. "Investigation of aerodynamic performance characteristics of a wind-turbine-blade profile using the finite-volume method," Renewable Energy, Elsevier, vol. 161(C), pages 1359-1367.
    19. Rossi, Mosè & Nigro, Alessandra & Renzi, Massimiliano, 2019. "Experimental and numerical assessment of a methodology for performance prediction of Pumps-as-Turbines (PaTs) operating in off-design conditions," Applied Energy, Elsevier, vol. 248(C), pages 555-566.
    20. Sinagra, Marco & Aricò, Costanza & Tucciarelli, Tullio & Morreale, Gabriele, 2020. "Experimental and numerical analysis of a backpressure Banki inline turbine for pressure regulation and energy production," Renewable Energy, Elsevier, vol. 149(C), pages 980-986.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:266-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.