IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i12p3284-d239817.html
   My bibliography  Save this article

Water Environment Policy and Climate Change: A Comparative Study of India and South Korea

Author

Listed:
  • Mohd Danish Khan

    (Resources Recycling Department, University of Science and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
    Center for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Korea)

  • Sonam Shakya

    (Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India)

  • Hong Ha Thi Vu

    (Center for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Korea)

  • Ji Whan Ahn

    (Center for Carbon Mineralization, Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources (KIGAM), 124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Korea)

  • Gnu Nam

    (National Institute of Chemical Safety, Ministry of Environment, 90 Gajeongbuk-ro, Yuseong-gu, Daejeon 34111, Korea)

Abstract

Climate change is considered to be a potential cause of global warming, which leads to a continuous rise in the global atmospheric temperature. This rising temperature also alters precipitation conditions and patterns, thereby causing frequent occurrences of extreme calamity, particularly droughts and floods. Much evidence has been documented by the Intergovernmental Panel on Climate Change, illustrating fluctuations in precipitation patterns caused by global climate change. Recent studies have also highlighted the adverse impact of climate change on river flow, groundwater recovery, and flora and fauna. The theoretical political approach and scientific progress have generated ample opportunities to employ previously allusive methods against impacts caused by varying climatic parameters. In this study, the current state of India’s water environment policy is compared with that of South Korea. The “3Is”—ideas, institutions, and interests—which are considered pillars in the international field of political science, are used as variables. The concept of “ideas” highlights the degree of awareness regarding climate change while formulating water environment policy. Here, the awareness of India’s management regarding emerging water issues related to climate change are discussed and compared with that of South Korea. The concept of “institutions” illustrates the key differences in water environment policy under the umbrella of climate change between both countries within the associated national administrations. India’s administrations, such as the Ministry of Environment, Forests, and Climate Change; the Ministry of Water Resources, River Development, and Ganga Rejuvenation; the Ministry of Rural Development; and the Ministry of Housing and Urban Affairs, are used as a case study in this work. Finally, the concept of “interest” elaborates the prioritization of key issues in the respective water environment policies. Common interests and voids in the policies of both countries are also briefly discussed. A comparison of India’s water environment policies with that of South Korea is made to expose the gaps in India’s policies with respect to climate change, thereby seeking to identify a solution and the optimal direction for the future of the water environment policy of India.

Suggested Citation

  • Mohd Danish Khan & Sonam Shakya & Hong Ha Thi Vu & Ji Whan Ahn & Gnu Nam, 2019. "Water Environment Policy and Climate Change: A Comparative Study of India and South Korea," Sustainability, MDPI, vol. 11(12), pages 1-10, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3284-:d:239817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/12/3284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/12/3284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heejung Kim & Kang-Kun Lee, 2018. "A Comparison of the Water Environment Policy of Europe and South Korea in Response to Climate Change," Sustainability, MDPI, vol. 10(2), pages 1-9, February.
    2. Ficklin, Darren L. & Luedeling, Eike & Zhang, Minghua, 2010. "Sensitivity of groundwater recharge under irrigated agriculture to changes in climate, CO2 concentrations and canopy structure," Agricultural Water Management, Elsevier, vol. 97(7), pages 1039-1050, July.
    3. Philip J. K. McGowan & Gavin B. Stewart & Graham Long & Matthew J. Grainger, 2019. "An imperfect vision of indivisibility in the Sustainable Development Goals," Nature Sustainability, Nature, vol. 2(1), pages 43-45, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Wen & Mingxiang Yang & Wenhai Guan & Jixue Cao & Yibo Zou & Xuan Liu & Hejia Wang & Ningpeng Dong, 2023. "The Impact of Inter-Basin Water Transfer Schemes on Hydropower Generation in the Upper Reaches of the Yangtze River during Extreme Drought Years," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    2. Horea Olosutean & Maria Cerciu, 2022. "Water Sustainability in the Context of Global Warming: A Bibliometric Analysis," Sustainability, MDPI, vol. 14(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lena I. Fuldauer & Scott Thacker & Robyn A. Haggis & Francesco Fuso-Nerini & Robert J. Nicholls & Jim W. Hall, 2022. "Targeting climate adaptation to safeguard and advance the Sustainable Development Goals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Andrej David & Peter Mako & Jan Lizbetin & Patrik Bohm, 2021. "The Impact of an Environmental Way of Customer’s Thinking on a Range of Choice from Transport Routes in Maritime Transport," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    3. Myriam Pham‐Truffert & Florence Metz & Manuel Fischer & Henri Rueff & Peter Messerli, 2020. "Interactions among Sustainable Development Goals: Knowledge for identifying multipliers and virtuous cycles," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1236-1250, September.
    4. Ulrike Zeigermann, 2021. "Scientific Knowledge Integration and the Implementation of the SDGs: Comparing Strategies of Sustainability Networks," Politics and Governance, Cogitatio Press, vol. 9(1), pages 164-175.
    5. Chen, Zongkui & Niu, Yuping & Zhao, Ruihai & Han, Chunli & Han, Huanyong & Luo, Honghai, 2019. "The combination of limited irrigation and high plant density optimizes canopy structure and improves the water use efficiency of cotton," Agricultural Water Management, Elsevier, vol. 218(C), pages 139-148.
    6. Tracy Van Holt & Martin Delaroche & Ulrich Atz & Kevin Eckerle, 2021. "Financial benefits of reimagined, sustainable, agrifood supply networks," Journal of International Business Policy, Palgrave Macmillan, vol. 4(1), pages 102-118, March.
    7. Cameron Allen & Graciela Metternicht & Thomas Wiedmann, 2021. "Priorities for science to support national implementation of the sustainable development goals: A review of progress and gaps," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 635-652, July.
    8. Simon Friederich & Jonathan Symons, 2023. "Operationalising sustainability? Why sustainability fails as an investment criterion for safeguarding the future," Global Policy, London School of Economics and Political Science, vol. 14(1), pages 61-71, February.
    9. Huijuan Xiao & Yue Liu & Jingzheng Ren, 2023. "Synergies and trade‐offs across sustainable development goals: A novel method incorporating indirect interactions analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 1135-1148, April.
    10. Ramos, T.B. & Simionesei, L. & Jauch, E. & Almeida, C. & Neves, R., 2017. "Modelling soil water and maize growth dynamics influenced by shallow groundwater conditions in the Sorraia Valley region, Portugal," Agricultural Water Management, Elsevier, vol. 185(C), pages 27-42.
    11. Heejung Kim & Kang-Kun Lee, 2018. "A Comparison of the Water Environment Policy of Europe and South Korea in Response to Climate Change," Sustainability, MDPI, vol. 10(2), pages 1-9, February.
    12. Felix Laumann & Julius von Kugelgen & Mauricio Barahona, 2020. "Non-linear interlinkages and key objectives amongst the Paris Agreement and the Sustainable Development Goals," Papers 2004.09318, arXiv.org.
    13. Sang Ug Kim & Minwoo Son & Eun-Sung Chung & Xiao Yu, 2018. "Effects of Non-Stationarity on Flood Frequency Analysis: Case Study of the Cheongmicheon Watershed in South Korea," Sustainability, MDPI, vol. 10(5), pages 1-16, April.
    14. Jari Lyytimäki & Kirsi-Marja Lonkila & Eeva Furman & Kaisa Korhonen-Kurki & Satu Lähteenoja, 2021. "Untangling the interactions of sustainability targets: synergies and trade-offs in the Northern European context," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3458-3473, March.
    15. Huijuan Xiao & Sheng Bao & Jingzheng Ren & Zhenci Xu & Song Xue & Jianguo Liu, 2024. "Global transboundary synergies and trade-offs among Sustainable Development Goals from an integrated sustainability perspective," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Roland Barthel & Tim Reichenau & Tatjana Krimly & Stephan Dabbert & Karl Schneider & Wolfram Mauser, 2012. "Integrated Modeling of Global Change Impacts on Agriculture and Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1929-1951, May.
    17. Qiang Xing & Chaoyang Wu & Fang Chen & Jianguo Liu & Prajal Pradhan & Brett A. Bryan & Thomas Schaubroeck & L. Roman Carrasco & Alemu Gonsamo & Yunkai Li & Xiuzhi Chen & Xiangzheng Deng & Andrea Alban, 2024. "Intranational synergies and trade-offs reveal common and differentiated priorities of sustainable development goals in China," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Sea Jin Kim & Woo-Kyun Lee & Jun Young Ahn & Wona Lee & Soo Jeong Lee, 2021. "Analysis of Developmental Chronology of South Korean Compressed Growth as a Reference from Sustainable Development Perspectives," Sustainability, MDPI, vol. 13(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3284-:d:239817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.