IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3163-d237373.html
   My bibliography  Save this article

Hybridization of Hemp Fiber and Recycled-Carbon Fiber in Polypropylene Composites

Author

Listed:
  • Niyati Shah

    (Mechanical Engineering Department, North Dakota State University (NDSU), Fargo, ND 58102, USA)

  • Joseph Fehrenbach

    (Mechanical Engineering Department, North Dakota State University (NDSU), Fargo, ND 58102, USA)

  • Chad A. Ulven

    (Mechanical Engineering Department, North Dakota State University (NDSU), Fargo, ND 58102, USA)

Abstract

In recent years there has been a substantial growth in the use of natural fiber reinforced composite in more advanced applications. However, high strength applications require high mechanical properties. Hybridization of natural fibers with synthetic fibers is an effective method of increasing the field of application and mechanical properties. The effects of hybridizing hemp ( Cannabis sativa L.) fiber with recycled-carbon fiber were investigated in this study to determine the trends in mechanical properties resulting from varied weight fractions. Characterization of void content was accomplished using micro computed tomography (micro-CT). Through hybridizing hemp fiber and recycled carbon fiber in a polypropylene thermoplastic, a new class of high performance, low cost composites were demonstrated for injection molding applications. This study showcased a 10–15% increase in tensile strength after the reinforcement of recycled-carbon fiber with hemp fiber. A 30–35% increase was observed in the flexure strength after the reinforcement of recycled-carbon fiber with hemp fiber. Impact strength also had an increase of 35–40% for hemp fiber reinforced recycled-carbon fiber polypropylene composites.

Suggested Citation

  • Niyati Shah & Joseph Fehrenbach & Chad A. Ulven, 2019. "Hybridization of Hemp Fiber and Recycled-Carbon Fiber in Polypropylene Composites," Sustainability, MDPI, vol. 11(11), pages 1-12, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3163-:d:237373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3163/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3163/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Aguado & Francesc Xavier Espinach & Fabiola Vilaseca & Quim Tarrés & Pere Mutjé & Marc Delgado-Aguilar, 2022. "Approaching a Zero-Waste Strategy in Rapeseed ( Brassica napus ) Exploitation: Sustainably Approaching Bio-Based Polyethylene Composites," Sustainability, MDPI, vol. 14(13), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3163-:d:237373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.