IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3117-d236675.html
   My bibliography  Save this article

Testing of the Integrated Energy Behavior of Sustainable Improved Mortar Panels with Recycled Additives by Means of Energy Simulation

Author

Listed:
  • Raúl Briones-Llorente

    (Department of Electromechanical Engineering, University of Burgos, Avenida de Cantabria s/n, 09006 Burgos, Spain)

  • Verónica Calderón

    (Department of Construction, University of Burgos, Calle Villadiego s/n, 09001 Burgos, Spain)

  • Sara Gutiérrez-González

    (Department of Construction, University of Burgos, Calle Villadiego s/n, 09001 Burgos, Spain)

  • Eduardo Montero

    (Department of Electromechanical Engineering, University of Burgos, Avenida de Cantabria s/n, 09006 Burgos, Spain)

  • Ángel Rodríguez

    (Department of Construction, University of Burgos, Calle Villadiego s/n, 09001 Burgos, Spain)

Abstract

Present waste management policies aim to reduce waste environmental impacts and improve resources’ efficiency. The use of waste and recycled materials to develop green construction materials are attracting researchers worldwide to develop new solutions addressed to increase the sustainability of buildings. This work presents a study of a new recycled mortar panel from the point of view of its contribution to the sustainability of buildings. Materials from industrial waste, as rigid polyurethane foam and electric arc furnace slags, are used as an additive of prefabricated mortar panels. The new proposed panels must have good thermal behavior with respect to the heat transfer interactions with the outside temperature and relative humidity, when compared to traditional brick or concrete. A test building with two kinds of representative uses, which are both residential and tertiary, and located in three cities of Spain with different climates, will be energy simulated in order to assess the thermal behavior of new construction or refurbished opaque ventilated façades with the new mortar panel. The thermal behavior of the new mortar panels would be studied by means of two energy assessments: (i) the evaluation of the influence of the new mortar panel in the energy demand of the whole building when compared to traditional materials, and (ii) the detailed analysis of the transient inner surface temperature of the space walls when using the new mortar panel. Based on the results obtained from the energy simulations performed, it follows that the thermal behavior of the mortar panel is, at least, equivalent to those of the other two materials, and even better in some aspects.

Suggested Citation

  • Raúl Briones-Llorente & Verónica Calderón & Sara Gutiérrez-González & Eduardo Montero & Ángel Rodríguez, 2019. "Testing of the Integrated Energy Behavior of Sustainable Improved Mortar Panels with Recycled Additives by Means of Energy Simulation," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3117-:d:236675
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krausmann, Fridolin & Gingrich, Simone & Eisenmenger, Nina & Erb, Karl-Heinz & Haberl, Helmut & Fischer-Kowalski, Marina, 2009. "Growth in global materials use, GDP and population during the 20th century," Ecological Economics, Elsevier, vol. 68(10), pages 2696-2705, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Clyde Zhengdao Li & Mingcong Hu & Bing Xiao & Zhe Chen & Vivian W. Y. Tam & Yiyu Zhao, 2021. "Mapping the Knowledge Domains of Emerging Advanced Technologies in the Management of Prefabricated Construction," Sustainability, MDPI, vol. 13(16), pages 1-31, August.
    2. Yao-Tang Hsu & Wen-Hsin Wang & Wei-Hsi Hung, 2020. "Architectural Sustainability and Efficiency of Enhanced Waterproof Coating from Utilization of Waterborne Poly (Siloxane-Imide-Urethane) Copolymers on Roof Surfaces," Sustainability, MDPI, vol. 12(11), pages 1-17, May.
    3. Camila Gregório-Atem & Carolina Aparicio-Fernández & Helena Coch & José-Luis Vivancos, 2020. "Opaque Ventilated Façade (OVF) Thermal Performance Simulation for Office Buildings in Brazil," Sustainability, MDPI, vol. 12(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George C. Efthimiou & Panos Kalimeris & Spyros Andronopoulos & John G. Bartzis, 2018. "Statistical Projection of Material Intensity: Evidence from the Global Economy and 107 Countries," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1465-1472, December.
    2. Rode, Julian & Le Menestrel, Marc & Cornelissen, Gert, 2017. "Ecosystem Service Arguments Enhance Public Support for Environmental Protection - But Beware of the Numbers!," Ecological Economics, Elsevier, vol. 141(C), pages 213-221.
    3. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    4. Ragnheiður Bogadóttir, 2020. "The Social Metabolism of Quiet Sustainability in the Faroe Islands," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    5. Marco Bianchi & Carlos Tapia & Ikerne del Valle, 2020. "Monitoring domestic material consumption at lower territorial levels: A novel data downscaling method," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1074-1087, October.
    6. Zengzeng Fan & Yuanyang Wang & Yanchao Feng, 2021. "Ecological Livability Assessment of Urban Agglomerations in Guangdong-Hong Kong-Macao Greater Bay Area," IJERPH, MDPI, vol. 18(24), pages 1-16, December.
    7. Azimi, Mohammad Naim, 2016. "An economic growth model: Evaluating the interaction of market consumption with GDP growth rate in Afghanistan," MPRA Paper 69517, University Library of Munich, Germany, revised 11 Jan 2016.
    8. Kander, Astrid & Warde, Paul & Teives Henriques, Sofia & Nielsen, Hana & Kulionis, Viktoras & Hagen, Sven, 2017. "International Trade and Energy Intensity During European Industrialization, 1870–1935," Ecological Economics, Elsevier, vol. 139(C), pages 33-44.
    9. Cordier, Mateo & Uehara, Takuro & Baztan, Juan & Jorgensen, Bethany & Yan, Huijie, 2021. "Plastic pollution and economic growth: The influence of corruption and lack of education," Ecological Economics, Elsevier, vol. 182(C).
    10. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
    11. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.
    12. Bert Scholtens & Riikka Sievänen, 2013. "Drivers of Socially Responsible Investing: A Case Study of Four Nordic Countries," Journal of Business Ethics, Springer, vol. 115(3), pages 605-616, July.
    13. Nathaniel, Solomon Prince & Yalçiner, Kürşat & Bekun, Festus Victor, 2021. "Assessing the environmental sustainability corridor: Linking natural resources, renewable energy, human capital, and ecological footprint in BRICS," Resources Policy, Elsevier, vol. 70(C).
    14. Julia K Steinberger & Fridolin Krausmann & Michael Getzner & Heinz Schandl & Jim West, 2013. "Development and Dematerialization: An International Study," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    15. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    16. Yoshida, Keisuke & Fishman, Tomer & Okuoka, Keijiro & Tanikawa, Hiroki, 2017. "Material stock's overburden: Automatic spatial detection and estimation of domestic extraction and hidden material flows," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 165-175.
    17. Guiomar Calvo & Gavin Mudd & Alicia Valero & Antonio Valero, 2016. "Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?," Resources, MDPI, vol. 5(4), pages 1-14, November.
    18. Raupova, Ozoda & Kamahara, Hirotsugu & Goto, Naohiro, 2014. "Assessment of physical economy through economy-wide material flow analysis in developing Uzbekistan," Resources, Conservation & Recycling, Elsevier, vol. 89(C), pages 76-85.
    19. Serrenho, André Cabrera & Warr, Benjamin & Sousa, Tânia & Ayres, Robert U. & Domingos, Tiago, 2016. "Structure and dynamics of useful work along the agriculture-industry-services transition: Portugal from 1856 to 2009," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 1-21.
    20. Tobias Wendler, 2019. "About the Relationship Between Green Technology and Material Usage," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1383-1423, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3117-:d:236675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.