IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3098-d236311.html
   My bibliography  Save this article

Evaluating Sustainability in Traditional Silvopastoral Systems (caívas): Looking Beyond the Impact of Animals on Biodiversity

Author

Listed:
  • Ana Lúcia Hanisch

    (EPAGRI Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Canoinhas, CEP 89466-500, Brazil)

  • Raquel R. B. Negrelle

    (Department of Vegetal Production, Universidade Federal do Paraná, Curitiba, CEP 80035-050, Brazil)

  • Rafael Araújo Bonatto

    (Department of Vegetal Production, Universidade Federal do Paraná, Curitiba, CEP 80035-050, Brazil)

  • Evelyn Roberta Nimmo

    (Department of History, Universidade Estadual de Ponta Grossa, Ponta Grossa, CEP 84030-900, Brazil)

  • André Eduardo Biscaia Lacerda

    (Embrapa Forestry, Colombo, CEP 83411-000, Brazil)

Abstract

Caívas are traditional silvopastoral systems that occur in the Araucaria Forest biome, Southern Brazil, in which animal production and erva-mate extraction are integrated. Participatory research was conducted in caívas in the Northern Plateau, Santa Catarina State, to identify strategies to intensify pasture use and increase animal productivity. To better understand the outcomes of these strategies, a sustainability assessment was conducted in properties that participated in the research (improved caívas; IC) and those that did not (traditional caívas; TC). The Sustainability Assessment of Food and Agriculture Systems (SAFA) tool 2.0.0 for smallholders was chosen as it evaluates the productive unit as a whole using environmental, social, economic, and governance indicators and is tailored for small-scale production. All evaluated indicators showed higher scores for IC properties in relation to TC. In general, the SAFA analysis showed that when evaluated as productive systems, TCs are a strategic option for rural development, as 65% of their indicators were evaluated as good. With the support of rural outreach and research and the adoption of appropriate technologies, this percentage increased to 86% in ICs. These results confirm that with adequate support caívas can significantly contribute to the development of more sustainable livestock farming in Southern Brazil.

Suggested Citation

  • Ana Lúcia Hanisch & Raquel R. B. Negrelle & Rafael Araújo Bonatto & Evelyn Roberta Nimmo & André Eduardo Biscaia Lacerda, 2019. "Evaluating Sustainability in Traditional Silvopastoral Systems (caívas): Looking Beyond the Impact of Animals on Biodiversity," Sustainability, MDPI, vol. 11(11), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3098-:d:236311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3098/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3098/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Olde, Evelien M. & Bokkers, Eddie A.M. & de Boer, Imke J.M., 2017. "The Choice of the Sustainability Assessment Tool Matters: Differences in Thematic Scope and Assessment Results," Ecological Economics, Elsevier, vol. 136(C), pages 77-85.
    2. Matthew Heron Wilson & Sarah Taylor Lovell, 2016. "Agroforestry—The Next Step in Sustainable and Resilient Agriculture," Sustainability, MDPI, vol. 8(6), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. André Eduardo Biscaia Lacerda & Ana Lúcia Hanisch & Evelyn Roberta Nimmo, 2020. "Leveraging Traditional Agroforestry Practices to Support Sustainable and Agrobiodiverse Landscapes in Southern Brazil," Land, MDPI, vol. 9(6), pages 1-19, June.
    2. Carla Johnston & Andrew Spring, 2021. "Grassroots and Global Governance: Can Global–Local Linkages Foster Food System Resilience for Small Northern Canadian Communities?," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    3. Ambrogio Zanzi & Valentina Vaglia & Roberto Spigarolo & Stefano Bocchi, 2021. "Assessing Agri-Food Start-Ups Sustainability in Peri-Urban Agriculture Context," Land, MDPI, vol. 10(4), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sri Astutik & Jürgen Pretzsch & Jude Ndzifon Kimengsi, 2019. "Asian Medicinal Plants’ Production and Utilization Potentials: A Review," Sustainability, MDPI, vol. 11(19), pages 1-33, October.
    2. Shah Fahad & Sangram Bhanudas Chavan & Akash Ravindra Chichaghare & Appanderanda Ramani Uthappa & Manish Kumar & Vijaysinha Kakade & Aliza Pradhan & Dinesh Jinger & Gauri Rawale & Dinesh Kumar Yadav &, 2022. "Agroforestry Systems for Soil Health Improvement and Maintenance," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    3. Theodrose Sisay & Kindie Tesfaye & Mengistu Ketema & Nigussie Dechassa & Mezegebu Getnet, 2023. "Climate-Smart Agriculture Technologies and Determinants of Farmers’ Adoption Decisions in the Great Rift Valley of Ethiopia," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    4. Stephen B. Stewart & Anthony P. O’Grady & Daniel S. Mendham & Greg S. Smith & Philip J. Smethurst, 2022. "Digital Tools for Quantifying the Natural Capital Benefits of Agroforestry: A Review," Land, MDPI, vol. 11(10), pages 1-32, September.
    5. Justus G. V. van Ramshorst & Lukas Siebicke & Moritz Baumeister & Fernando E. Moyano & Alexander Knohl & Christian Markwitz, 2022. "Reducing Wind Erosion through Agroforestry: A Case Study Using Large Eddy Simulations," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    6. Lhermie, Guillaume & Wernli, Didier & Jørgensen, Peter Søgaard & Kenkel, Donald & Lin Lawell, C.-Y. Cynthia & Tauer, Loren William & Gröhn, Yrjo Tapio, 2019. "Tradeoffs between resistance to antimicrobials in public health and their use in agriculture: Moving towards sustainability assessment," Ecological Economics, Elsevier, vol. 166(C), pages 1-1.
    7. Stan Selbonne & Loïc Guindé & François Causeret & Pierre Chopin & Jorge Sierra & Régis Tournebize & Jean-Marc Blazy, 2023. "How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    8. Christian Dupraz & Kevin J. Wolz & Isabelle Lecomte & Grégoire Talbot & Grégoire Vincent & Rachmat Mulia & François Bussière & Harry Ozier-Lafontaine & Sitraka Andrianarisoa & Nick Jackson & Gerry Law, 2019. "Hi-sAFe: A 3D Agroforestry Model for Integrating Dynamic Tree–Crop Interactions," Sustainability, MDPI, vol. 11(8), pages 1-25, April.
    9. Maharaj, Shobha S. & Asmath, Hamish & Ali, Safraz & Agard, John & Harris, Stephen A. & New, Mark, 2019. "Assessing protected area effectiveness within the Caribbean under changing climate conditions: A case study of the small island, Trinidad," Land Use Policy, Elsevier, vol. 81(C), pages 185-193.
    10. Veronika Hannus & Johannes Sauer, 2021. "Understanding Farmers’ Intention to Use a Sustainability Standard: The Role of Economic Rewards, Knowledge, and Ease of Use," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
    11. Rita Biasi & Roberta Farina & Elena Brunori, 2021. "Family Farming Plays an Essential Role in Preserving Soil Functionality: A Study on Active Managed and Abandoned Traditional Tree Crop-Based Systems," Sustainability, MDPI, vol. 13(7), pages 1-18, April.
    12. Craig R. Elevitch & D. Niki Mazaroli & Diane Ragone, 2018. "Agroforestry Standards for Regenerative Agriculture," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    13. Kira J. Cooper & Robert B. Gibson, 2022. "A Novel Framework for Inner-Outer Sustainability Assessment," Challenges, MDPI, vol. 13(2), pages 1-27, December.
    14. Florian Findler, 2021. "Toward a sustainability assessment framework of research impacts: Contributions of a business school," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1190-1203, November.
    15. Naoum Tsolakis & Foivos Anastasiadis & Jagjit Singh Srai, 2018. "Sustainability Performance in Food Supply Networks: Insights from the UK Industry," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    16. Antonia Katharina Ruckli & Stefan Josef Hörtenhuber & Paolo Ferrari & Jonathan Guy & Juliane Helmerichs & Robert Hoste & Carmen Hubbard & Nadja Kasperczyk & Christine Leeb & Agata Malak-Rawlikowska & , 2022. "Integrative Sustainability Analysis of European Pig Farms: Development of a Multi-Criteria Assessment Tool," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    17. M. Anowarul Islam & Dennis S. Ashilenje, 2018. "Diversified Forage Cropping Systems and Their Implications on Resilience and Productivity," Sustainability, MDPI, vol. 10(11), pages 1-13, October.
    18. Keefe O. Keeley & Kevin J. Wolz & Kaitie I. Adams & Jeannine H. Richards & Erin Hannum & Severine von Tscharner Fleming & Stephen J. Ventura, 2019. "Multi-Party Agroforestry: Emergent Approaches to Trees and Tenure on Farms in the Midwest USA," Sustainability, MDPI, vol. 11(8), pages 1-22, April.
    19. Ambrogio Zanzi & Valentina Vaglia & Roberto Spigarolo & Stefano Bocchi, 2021. "Assessing Agri-Food Start-Ups Sustainability in Peri-Urban Agriculture Context," Land, MDPI, vol. 10(4), pages 1-20, April.
    20. Bolier Torres & Cristian Vasco & Sven Günter & Thomas Knoke, 2018. "Determinants of Agricultural Diversification in a Hotspot Area: Evidence from Colonist and Indigenous Communities in the Sumaco Biosphere Reserve, Ecuadorian Amazon," Sustainability, MDPI, vol. 10(5), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3098-:d:236311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.