IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2018i1p131-d193505.html
   My bibliography  Save this article

An Assessment of European Information Technology Tools to Support Industrial Symbiosis

Author

Listed:
  • Amtul Samie Maqbool

    (Energy & Cluster Management, Faculty of Engineering and Architecture, Ghent University, B-9000 Ghent, Belgium)

  • Francisco Mendez Alva

    (Energy & Cluster Management, Faculty of Engineering and Architecture, Ghent University, B-9000 Ghent, Belgium)

  • Greet Van Eetvelde

    (Energy & Cluster Management, Faculty of Engineering and Architecture, Ghent University, B-9000 Ghent, Belgium)

Abstract

Industrial symbiosis (IS) has proven to bring collective benefits to multiple stakeholders by minimising underutilised resources, sharing knowledge and improving business and technical processes. In Europe alone, over €130 million have been invested since 2006 in research projects that enable IS by developing a methodology, tool, software, platform or network that facilitates the uptake of IS by different economic actors. This paper discusses and assesses information technology (IT) developments for supporting IS in Europe, following the five-stage methodology of Grant et al. (2010). It provides guidance to the applicants and reviewers of publicly funded research projects by listing the developments and gaps in the newly developed IT tools for IS. Content analysis of publicly available information on 20 IS supporting IT tools reveals a strong focus on synergy identification but a lack of support for the implementation stage of IS. The paper indicates that a vast quantity of IT tools and knowledge is created during the IT tool development stage and newer IT tools now also include implicit information for identifying IS. It was found that successfully operational IT tools are either part of a national or local IS programme or owned by a private company. The paper ends with the recommendation that better mechanisms are needed to ensure that publicly funded IS-supporting IT tools successfully reach the market.

Suggested Citation

  • Amtul Samie Maqbool & Francisco Mendez Alva & Greet Van Eetvelde, 2018. "An Assessment of European Information Technology Tools to Support Industrial Symbiosis," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:131-:d:193505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/1/131/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/1/131/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang Li & Lei Shi, 2015. "The Resilience of Interdependent Industrial Symbiosis Networks: A Case of Yixing Economic and Technological Development Zone," Journal of Industrial Ecology, Yale University, vol. 19(2), pages 264-273, April.
    2. Walter R. Stahel, 2016. "The circular economy," Nature, Nature, vol. 531(7595), pages 435-438, March.
    3. D. Rachel Lombardi & Peter Laybourn, 2012. "Redefining Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 28-37, February.
    4. Hackl, Roman & Andersson, Eva & Harvey, Simon, 2011. "Targeting for energy efficiency and improved energy collaboration between different companies using total site analysis (TSA)," Energy, Elsevier, vol. 36(8), pages 4609-4615.
    5. Guido Capelleveen & Chintan Amrit & Devrim Murat Yazan, 2018. "A Literature Survey of Information Systems Facilitating the Identification of Industrial Symbiosis," Progress in IS, in: Benoît Otjacques & Patrik Hitzelberger & Stefan Naumann & Volker Wohlgemuth (ed.), From Science to Society, pages 155-169, Springer.
    6. Peter Laybourn & D. Rachel Lombardi, 2012. "Industrial Symbiosis in European Policy," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 11-12, February.
    7. Gabriel B. Grant & Thomas P. Seager & Guillaume Massard & Loring Nies, 2010. "Information and Communication Technology for Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 740-753, October.
    8. Artem Golev & Glen D. Corder & Damien P. Giurco, 2015. "Barriers to Industrial Symbiosis: Insights from the Use of a Maturity Grid," Journal of Industrial Ecology, Yale University, vol. 19(1), pages 141-153, February.
    9. Rachel Lombardi, 2017. "Non-technical barriers to (and drivers for) the circular economy through industrial symbiosis: A practical input," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(1-2), pages 171-189.
    10. Leo Baas, 2011. "Planning and Uncovering Industrial Symbiosis: Comparing the Rotterdam and Östergötland regions," Business Strategy and the Environment, Wiley Blackwell, vol. 20(7), pages 428-440, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Margarida Soares & André Ribeiro & Tomás Vasconcelos & Manuel Barros & Carla Castro & Cândida Vilarinho & Joana Carvalho, 2023. "Challenges of Digital Waste Marketplace—The Upvalue Platform," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    2. Rui Dias & João Azevedo & Inês Ferreira & Marco Estrela & Juan Henriques & Cristina Ascenço & Muriel Iten, 2020. "Technical Viability Analysis of Industrial Synergies—An Applied Framework Perspective," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    3. Dick van Beers & Alessandro Flammini & Frédéric David Meylan & Jérôme Stucki, 2019. "Lessons Learned from the Application of the UNIDO Eco-Industrial Park Toolbox in Viet Nam and Other Countries," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    4. João Azevedo & Inês Ferreira & Rui Dias & Cristina Ascenço & Bruno Magalhães & Juan Henriques & Muriel Iten & Fernando Cunha, 2021. "Industrial Symbiosis Implementation Potential—An Applied Assessment Tool for Companies," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    5. Daniel Jato-Espino & Carmen Ruiz-Puente, 2020. "Fostering Circular Economy Through the Analysis of Existing Open Access Industrial Symbiosis Databases," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    6. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    7. Juan Henriques & Paulo Ferrão & Muriel Iten, 2022. "Policies and Strategic Incentives for Circular Economy and Industrial Symbiosis in Portugal: A Future Perspective," Sustainability, MDPI, vol. 14(11), pages 1-24, June.
    8. Juan Diego Henriques & João Azevedo & Rui Dias & Marco Estrela & Cristina Ascenço & Doroteya Vladimirova & Karen Miller, 2022. "Implementing Industrial Symbiosis Incentives: an Applied Assessment Framework for Risk Mitigation," Circular Economy and Sustainability, Springer, vol. 2(2), pages 669-692, June.
    9. Lucyna Łȩkawska-Andrinopoulou & Georgios Tsimiklis & Sarah Leick & Manuel Moreno Nicolás & Angelos Amditis, 2021. "Circular Economy Matchmaking Framework for Future Marketplace Deployment," Sustainability, MDPI, vol. 13(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    2. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).
    3. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    4. Hélène Cervo & Stéphane Ogé & Amtul Samie Maqbool & Francisco Mendez Alva & Lindsay Lessard & Alexandre Bredimas & Jean-Henry Ferrasse & Greet Van Eetvelde, 2019. "A Case Study of Industrial Symbiosis in the Humber Region Using the EPOS Methodology," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    5. Daniela C. A. Pigosso & Andreas Schmiegelow & Maj Munch Andersen, 2018. "Measuring the Readiness of SMEs for Eco-Innovation and Industrial Symbiosis: Development of a Screening Tool," Sustainability, MDPI, vol. 10(8), pages 1-25, August.
    6. Miguel A. Artacho-Ramírez & Bélgica Pacheco-Blanco & Víctor A. Cloquell-Ballester & Mónica Vicent & Irina Celades, 2020. "Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    7. João Azevedo & Inês Ferreira & Rui Dias & Cristina Ascenço & Bruno Magalhães & Juan Henriques & Muriel Iten & Fernando Cunha, 2021. "Industrial Symbiosis Implementation Potential—An Applied Assessment Tool for Companies," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    8. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    9. Aid, Graham & Eklund, Mats & Anderberg, Stefan & Baas, Leenard, 2017. "Expanding roles for the Swedish waste management sector in inter-organizational resource management," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 85-97.
    10. Rachel Lombardi, 2017. "Non-technical barriers to (and drivers for) the circular economy through industrial symbiosis: A practical input," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(1-2), pages 171-189.
    11. Daniel Jato-Espino & Carmen Ruiz-Puente, 2020. "Fostering Circular Economy Through the Analysis of Existing Open Access Industrial Symbiosis Databases," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    12. Sergio Barile & Clara Bassano & Raffaele D’Amore & Paolo Piciocchi & Marialuisa Saviano & Pietro Vito, 2021. "Insights of Digital Transformation Processes in Industrial Symbiosis from the Viable Systems Approach ( vSa )," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    13. Devrim Murat Yazan & Vahid Yazdanpanah & Luca Fraccascia, 2020. "Learning strategic cooperative behavior in industrial symbiosis: A game‐theoretic approach integrated with agent‐based simulation," Business Strategy and the Environment, Wiley Blackwell, vol. 29(5), pages 2078-2091, July.
    14. Chris Davis & Graham Aid, 2022. "Machine learning‐assisted industrial symbiosis: Testing the ability of word vectors to estimate similarity for material substitutions," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 27-43, February.
    15. Tian Yang & Changhao Liu & Raymond P. Côté & Jinwen Ye & Weifeng Liu, 2022. "Evaluating the Barriers to Industrial Symbiosis Using a Group AHP-TOPSIS Model," Sustainability, MDPI, vol. 14(11), pages 1-30, June.
    16. Luca Fraccascia & Alessandra Sabato & Devrim Murat Yazan, 2021. "An industrial symbiosis simulation game: Evidence from the circular sustainable business development class," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1688-1706, December.
    17. Anna Gatzioura & Miquel Sànchez-Marrè & Karina Gibert, 2019. "A Hybrid Recommender System to Improve Circular Economy in Industrial Symbiotic Networks," Energies, MDPI, vol. 12(18), pages 1-24, September.
    18. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    19. Anna Rohde-Lütje & Volker Wohlgemuth, 2020. "Recurring Patterns and Blueprints of Industrial Symbioses as Structural Units for an IT Tool," Sustainability, MDPI, vol. 12(19), pages 1-21, October.
    20. Xiaoxing Zhang & Changyuan Gao & Shuchen Zhang, 2021. "Research on the Knowledge-Sharing Incentive of the Cross-Boundary Alliance Symbiotic System," Sustainability, MDPI, vol. 13(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:131-:d:193505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.