IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2678-d160897.html
   My bibliography  Save this article

Biogas Potential of Coffee Processing Waste in Ethiopia

Author

Listed:
  • Bilhate Chala

    (Institute of Agricultural Engineering, Tropics and Subtropics Group(440e), University of Hohenheim, 70599 Stuttgart, Germany)

  • Hans Oechsner

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, 70599 Stuttgart, Germany)

  • Sajid Latif

    (Institute of Agricultural Engineering, Tropics and Subtropics Group(440e), University of Hohenheim, 70599 Stuttgart, Germany)

  • Joachim Müller

    (Institute of Agricultural Engineering, Tropics and Subtropics Group(440e), University of Hohenheim, 70599 Stuttgart, Germany)

Abstract

Primary coffee processing is performed following the dry method or wet method. The dry method generates husk as a by-product, while the wet method generates pulp, parchment, mucilage, and waste water. In this study, characterization, as well as the potential of husk, pulp, parchment, and mucilage for methane production were examined in biochemical methane potential assays performed at 37 °C. Pulp, husk, and mucilage had similar cellulose contents (32%). The lignin contents in pulp and husk were 15.5% and 17.5%, respectively. Mucilage had the lowest hemicellulose (0.8%) and lignin (5%) contents. The parchment showed substantially higher lignin (32%) and neutral detergent fiber (96%) contents. The mean specific methane yields from husk, pulp, parchment, and mucilage were 159.4 ± 1.8, 244.7 ± 6.4, 31.1 ± 2.0, and 294.5 ± 9.6 L kg −1 VS, respectively. The anaerobic performance of parchment was very low, and therefore was found not to be suitable for anaerobic fermentation. It was estimated that, in Ethiopia, anaerobic digestion of husk, pulp, and mucilage could generate as much as 68 × 10 6 m 3 methane per year, which could be converted to 238,000 MWh of electricity and 273,000 MWh of thermal energy in combined heat and power units. Coffee processing facilities can utilize both electricity and thermal energy for their own productive purposes.

Suggested Citation

  • Bilhate Chala & Hans Oechsner & Sajid Latif & Joachim Müller, 2018. "Biogas Potential of Coffee Processing Waste in Ethiopia," Sustainability, MDPI, vol. 10(8), pages 1-14, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2678-:d:160897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2678/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2678/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mengistu, M.G. & Simane, B. & Eshete, G. & Workneh, T.S., 2015. "A review on biogas technology and its contributions to sustainable rural livelihood in Ethiopia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 306-316.
    2. Kivaisi, Amelia K. & Rubindamayugi, M.S.T., 1996. "The potential of agro-industrial residues for production of biogas and electricity in Tanzania," Renewable Energy, Elsevier, vol. 9(1), pages 917-921.
    3. Gwavuya, S.G. & Abele, S. & Barfuss, I. & Zeller, M. & Müller, J., 2012. "Household energy economics in rural Ethiopia: A cost-benefit analysis of biogas energy," Renewable Energy, Elsevier, vol. 48(C), pages 202-209.
    4. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Czekała, Wojciech & Łukomska, Aleksandra & Pulka, Jakub & Bojarski, Wiktor & Pochwatka, Patrycja & Kowalczyk-Juśko, Alina & Oniszczuk, Anna & Dach, Jacek, 2023. "Waste-to-energy: Biogas potential of waste from coffee production and consumption," Energy, Elsevier, vol. 276(C).
    2. Justyna Górka & Małgorzata Cimochowicz-Rybicka & Dominika Poproch, 2022. "Sludge Management at the Kraków-Płaszów WWTP—Case Study," Sustainability, MDPI, vol. 14(13), pages 1-11, June.
    3. Mendoza Martinez, Clara Lisseth & Saari, Jussi & Melo, Yara & Cardoso, Marcelo & de Almeida, Gustavo Matheus & Vakkilainen, Esa, 2021. "Evaluation of thermochemical routes for the valorization of solid coffee residues to produce biofuels: A Brazilian case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Déborah Presta-Novello & Natalia Andrea Salazar-Camacho & Liliana Delgadillo-Mirquez & Héctor Mauricio Hernández-Sarabia & Mónica del Pilar Álvarez-Bustos, 2023. "Sustainable Development in the Colombian Post-Conflict—The Impact of Renewable Energies in Coffee-Growing Women," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    5. Yessenia Martínez-Ruiz & Diego Fernando Manotas-Duque & Juan Carlos Osorio-Gómez & Howard Ramírez-Malule, 2022. "Evaluation of Energy Potential from Coffee Pulp in a Hydrothermal Power Market through System Dynamics: The Case of Colombia," Sustainability, MDPI, vol. 14(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Regattieri & Marco Bortolini & Emilio Ferrari & Mauro Gamberi & Francesco Piana, 2018. "Biogas Micro-Production from Human Organic Waste—A Research Proposal," Sustainability, MDPI, vol. 10(2), pages 1-14, January.
    2. Gudina Terefe Tucho & Henri C. Moll & Anton J. M. Schoot Uiterkamp & Sanderine Nonhebel, 2016. "Problems with Biogas Implementation in Developing Countries from the Perspective of Labor Requirements," Energies, MDPI, vol. 9(9), pages 1-16, September.
    3. Roopnarain, Ashira & Adeleke, Rasheed, 2017. "Current status, hurdles and future prospects of biogas digestion technology in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1162-1179.
    4. Shane, Agabu & Gheewala, Shabbir H. & Phiri, Seveliano, 2017. "Rural domestic biogas supply model for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 683-697.
    5. Wenzhi Xu & Yongqun Zhu & Xie Wang & Lei Ji & Hong Wang & Li Yao & Chaowen Lin, 2021. "The Effect of Biogas Slurry Application on Biomass Production and Forage Quality of Lolium Multiflorum," Sustainability, MDPI, vol. 13(7), pages 1-13, March.
    6. Loh, S.K. & Nasrin, A.B. & Mohamad Azri, S. & Nurul Adela, B. & Muzzammil, N. & Daryl Jay, T. & Stasha Eleanor, R.A. & Lim, W.S. & Choo, Y.M. & Kaltschmitt, M., 2017. "First Report on Malaysia’s experiences and development in biogas capture and utilization from palm oil mill effluent under the Economic Transformation Programme: Current and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1257-1274.
    7. Shane, Agabu & Gheewala, Shabbir H. & Kafwembe, Young, 2017. "Urban commercial biogas power plant model for Zambian towns," Renewable Energy, Elsevier, vol. 103(C), pages 1-14.
    8. Ewunie, Gebresilassie Asnake & Morken, John & Lekang, Odd Ivar & Yigezu, Zerihun Demrew, 2021. "Factors affecting the potential of Jatropha curcas for sustainable biodiesel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Gudina Terefe Tucho & Sanderine Nonhebel, 2015. "Bio-Wastes as an Alternative Household Cooking Energy Source in Ethiopia," Energies, MDPI, vol. 8(9), pages 1-19, September.
    10. Alejandro Moure Abelenda & Kirk T. Semple & George Aggidis & Farid Aiouache, 2022. "Circularity of Bioenergy Residues: Acidification of Anaerobic Digestate Prior to Addition of Wood Ash," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    11. Amar Naji & Sabrina Guérin Rechdaoui & Elise Jabagi & Carlyne Lacroix & Sam Azimi & Vincent Rocher, 2023. "Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits," Energies, MDPI, vol. 16(18), pages 1-13, September.
    12. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    13. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    14. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    16. Capson-Tojo, G. & Moscoviz, R. & Astals, S. & Robles, Á. & Steyer, J.-P., 2020. "Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    17. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    18. Rahman, Md. Mizanur & Hasan, Mohammad Mahmodul & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries," Renewable Energy, Elsevier, vol. 68(C), pages 35-45.
    19. Gebrehiwot, Kiflom & Mondal, Md. Alam Hossain & Ringler, Claudia & Gebremeskel, Abiti Getaneh, 2019. "Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia," Energy, Elsevier, vol. 177(C), pages 234-246.
    20. Singh, Deval & Tembhare, Mamta & Machhirake, Nitesh & Kumar, Sunil, 2023. "Biogas generation potential of discarded food waste residue from ultra-processing activities at food manufacturing and packaging industry," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2678-:d:160897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.