IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v48y2012icp202-209.html
   My bibliography  Save this article

Household energy economics in rural Ethiopia: A cost-benefit analysis of biogas energy

Author

Listed:
  • Gwavuya, S.G.
  • Abele, S.
  • Barfuss, I.
  • Zeller, M.
  • Müller, J.

Abstract

Limited success in promoting improved energy sources, such as biogas, in rural areas of developing countries has been partly blamed on insufficient understanding of household energy use patterns. In this study, we assess the costs of energy generation from major energy sources (firewood and dung) in rural Ethiopia, as well as the economic potential of biogas as an alternative in addressing both energy and food security challenges. Results show that households in rural areas largely collect their own fuel, with female household members being mainly responsible for the chore. By investing in biogas plants, households could save time and energy, and have a supply of slurry that can be used as fertilizer in agricultural production. A cost-benefit analysis of biogas plants yields positive net present values for households collecting their own energy sources. Even higher net present values are obtained for households purchasing all of their energy needs; these households stand to gain significantly from the financial benefits of energy cost savings with biogas technology. Results are highly dependent on slurry being effectively used as a source of fertilizer and on the price of the replaced energy source. Thus the promotion of slurry use as fertilizer must be an integral part of a successful biogas programme. Another important issue is that at present, biogas plants are highly subsidized and thus the above conditions hold under the assumptions of subsidies. When analysed without subsidies, indicators are still positive, yet amortisation periods are significantly longer and close to the depreciation point, so that investment risks increase.

Suggested Citation

  • Gwavuya, S.G. & Abele, S. & Barfuss, I. & Zeller, M. & Müller, J., 2012. "Household energy economics in rural Ethiopia: A cost-benefit analysis of biogas energy," Renewable Energy, Elsevier, vol. 48(C), pages 202-209.
  • Handle: RePEc:eee:renene:v:48:y:2012:i:c:p:202-209
    DOI: 10.1016/j.renene.2012.04.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112002832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.04.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palmer, Charles & Macgregor, James, 2009. "Fuelwood scarcity, energy substitution, and rural livelihoods in Namibia," Environment and Development Economics, Cambridge University Press, vol. 14(6), pages 693-715, December.
    2. Rasmus Heltberg & Thomas Channing Arndt & Nagothu Udaya Sekhar, 2000. "Fuelwood Consumption and Forest Degradation: A Household Model for Domestic Energy Substitution in Rural India," Land Economics, University of Wisconsin Press, vol. 76(2), pages 213-232.
    3. Irene Tinker, 1987. "The Real Rural Energy Crisis: Women's Time," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 125-146.
    4. Gregory Amacher & William Hyde & Keshav Kanel, 1999. "Nepali fuelwood production and consumption: Regional and household distinctions, substitution and successful intervention," Journal of Development Studies, Taylor & Francis Journals, vol. 35(4), pages 138-163.
    5. Kumar, Shubh K. & Hotchkiss, David, 1988. "Consequences of deforestation for women's time allocation, agricultural production, and nutrition in hill areas of Nepal:," Research reports 69, International Food Policy Research Institute (IFPRI).
    6. Prajneshu, 2008. "Fitting of Cobb-Douglas Production Functions: Revisited," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 21(2).
    7. Dewees, Peter A., 1989. "The woodfuel crisis reconsidered: Observations on the dynamics of abundance and scarcity," World Development, Elsevier, vol. 17(8), pages 1159-1172, August.
    8. Kanagawa, Makoto & Nakata, Toshihiko, 2007. "Analysis of the energy access improvement and its socio-economic impacts in rural areas of developing countries," Ecological Economics, Elsevier, vol. 62(2), pages 319-329, April.
    9. Hanan G. Jacoby, 1993. "Shadow Wages and Peasant Family Labour Supply: An Econometric Application to the Peruvian Sierra," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(4), pages 903-921.
    10. I Fraser, 2002. "The Cobb-Douglas Production Function: An Antipodean Defence?," Economic Issues Journal Articles, Economic Issues, vol. 7(1), pages 39-58, March.
    11. Heltberg, Rasmus, 2005. "Factors determining household fuel choice in Guatemala," Environment and Development Economics, Cambridge University Press, vol. 10(3), pages 337-361, June.
    12. Cooke, Priscilla & Köhlin, Gunnar & Hyde, William F., 2008. "Fuelwood, forests and community management – evidence from household studies," Environment and Development Economics, Cambridge University Press, vol. 13(1), pages 103-135, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Démurger, Sylvie & Fournier, Martin, 2011. "Poverty and firewood consumption: A case study of rural households in northern China," China Economic Review, Elsevier, vol. 22(4), pages 512-523.
    2. Abebe Damte & Steven F. Koch & Alemu Mekonnen, 2011. "Coping with Fuel Wood Scarcity: Household Responses in Rural Ethiopia," Working Papers 201125, University of Pretoria, Department of Economics.
    3. Lee, Soo Min & Kim, Yeon-Su & Jaung, Wanggi & Latifah, Sitti & Afifi, Mansur & Fisher, Larry A., 2015. "Forests, fuelwood and livelihoods—energy transition patterns in eastern Indonesia," Energy Policy, Elsevier, vol. 85(C), pages 61-70.
    4. Jean-Marie Baland & Pranab Bardhan & Sanghamitra Das & Dilip Mookherjee & Rinki Sarkar, 2010. "The Environmental Impact of Poverty: Evidence from Firewood Collection in Rural Nepal," Economic Development and Cultural Change, University of Chicago Press, vol. 59(1), pages 23-61, October.
    5. Kowsari, Reza & Zerriffi, Hisham, 2011. "Three dimensional energy profile:," Energy Policy, Elsevier, vol. 39(12), pages 7505-7517.
    6. Gebru, Bahre & Elofsson, Katarina, 2023. "The role of forest status in households’ fuel choice in Uganda," Energy Policy, Elsevier, vol. 173(C).
    7. Kohlin, Gunnar & Sills, Erin O. & Pattanayak, Subhrendu K. & Wilfong, Christopher, 2011. "Energy, gender and development: what are the linkages ? where is the evidence ?," Policy Research Working Paper Series 5800, The World Bank.
    8. Ahmed Moustapha Mfokeu & Elie Virgile Chrysostome & Jean-Pierre Gueyie & Olivier Ebenezer Mun Ngapna, 2023. "Consumer Motivation behind the Use of Ecological Charcoal in Cameroon," Sustainability, MDPI, vol. 15(3), pages 1-22, January.
    9. Guta, Dawit Diriba, 2014. "Effect of fuelwood scarcity and socio-economic factors on household bio-based energy use and energy substitution in rural Ethiopia," Energy Policy, Elsevier, vol. 75(C), pages 217-227.
    10. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2016. "Patterns and determinants of household use of fuels for cooking: Empirical evidence from sub-Saharan Africa," Energy, Elsevier, vol. 117(P1), pages 93-104.
    11. Niklas Vahlne & Erik O. Ahlgren, 2014. "Energy Efficiency at the Base of the Pyramid: A System-Based Market Model for Improved Cooking Stove Adoption," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    12. Jack Gregory & David I. Stern, 2012. "Fuel Choices in Rural Maharashtra," CCEP Working Papers 1207, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    13. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter & Marenya, Paswel, 2017. "A ladder within a ladder: Understanding the factors influencing a household's domestic use of electricity in four African countries," Energy Economics, Elsevier, vol. 66(C), pages 167-181.
    14. Behera, Bhagirath & Rahut, Dil Bahadur & Jeetendra, Aryal & Ali, Akhter, 2015. "Household collection and use of biomass energy sources in South Asia," Energy, Elsevier, vol. 85(C), pages 468-480.
    15. Sajjad & Zia Ur Rahman, 2021. "A micro‐level data analysis of household energy demand in Khyber Pakhtunkhwa, Pakistan: An application of linear approximate almost ideal demand system," Growth and Change, Wiley Blackwell, vol. 52(1), pages 518-538, March.
    16. Muhammad Saad Moeen & Muhammad Asjad Tariq & Saqib Shahzad & Shehryar Rashid, 2016. "Factors Influencing Choice of Energy Sources in Rural Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 55(4), pages 905-920.
    17. Yang, Xiaojun & Xu, Jintao & Xu, Xiaojie & Yi, Yuanyuan & Hyde, William F., 2020. "Collective forest tenure reform and household energy consumption: A case study in Yunnan Province, China," China Economic Review, Elsevier, vol. 60(C).
    18. Pallegedara, Asankha & Mottaleb, Khondoker Abdul & Rahut, Dil Bahadur, 2021. "Exploring choice and expenditure on energy for domestic works by the Sri Lankan households: Implications for policy," Energy, Elsevier, vol. 222(C).
    19. Chow, Jeffrey, 2018. "Determinants of household fuelwood collection from mangrove plantations in coastal Bangladesh," Forest Policy and Economics, Elsevier, vol. 96(C), pages 83-92.
    20. Rahut, Dil Bahadur & Das, Sukanya & De Groote, Hugo & Behera, Bhagirath, 2014. "Determinants of household energy use in Bhutan," Energy, Elsevier, vol. 69(C), pages 661-672.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:48:y:2012:i:c:p:202-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.