IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2223-d155055.html
   My bibliography  Save this article

Quantitative Assessment of Regional Debris-Flow Risk: A Case Study in Southwest China

Author

Listed:
  • Guangxu Liu

    (School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China)

  • Erfu Dai

    (Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China)

  • Xinchuang Xu

    (School of Resources and Environmental Science and Engineering, Hubei University of Science and Technology, Xianning 437100, China)

  • Wenxiang Wu

    (Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China)

  • Aicun Xiang

    (School of Education Science, Gannan Normal University, Ganzhou 341000, China)

Abstract

This paper uses a comprehensive risk assessment method to investigate the population risk of debris flows in Southwest China. The methodology integrates models from hazard, vulnerability literature and some empirical equations. The main steps include debris-flow disaster-hazard zoning, estimation of the frequency of the disaster, factor identification of population vulnerability, and calculation of the fragility rate. The results demonstrate that the most hazardous regions in Southwest China are primarily observed in the mountains around the Sichuan Basin, the border area between Sichuan and Yunnan Provinces, the eastern and southern regions of Yunnan Province, and the eastern area of Guizhou Province. The extremely high vulnerability zones are characterized by a fragility rate of 3.89 persons per 10,000 people. The comprehensive risk gradually increases from the southeast of the study area to the central region, reaching its highest value (more than 100 persons/year) on the Jiangyou–Zhaotong–Baoshan Line and decreasing thereafter to its lowest in the northwestern region. Extremely large-scale disasters are the major factor of casualties. Appropriate risk management and mitigation solutions should be comprehensively determined based on the combination of debris-hazard levels and fragility rates in the hazardous regions.

Suggested Citation

  • Guangxu Liu & Erfu Dai & Xinchuang Xu & Wenxiang Wu & Aicun Xiang, 2018. "Quantitative Assessment of Regional Debris-Flow Risk: A Case Study in Southwest China," Sustainability, MDPI, vol. 10(7), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2223-:d:155055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2223/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2223/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guangxu Liu & Erfu Dai & Quansheng Ge & Wenxiang Wu & Xinchuang Xu, 2013. "A similarity-based quantitative model for assessing regional debris-flow hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 295-310, October.
    2. Jianyi Huang & Yi Liu & Li Ma & Fei Su, 2013. "Methodology for the assessment and classification of regional vulnerability to natural hazards in China: the application of a DEA model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 115-134, January.
    3. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    4. Maxx Dilley & Robert S. Chen & Uwe Deichmann & Arthur L. Lerner-Lam & Margaret Arnold, 2005. "Natural Disaster Hotspots: A Global Risk Analysis," World Bank Publications - Books, The World Bank Group, number 7376.
    5. P. Santi & K. Hewitt & D. VanDine & E. Barillas Cruz, 2011. "Debris-flow impact, vulnerability, and response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(1), pages 371-402, January.
    6. Francesco Gentile & Tiziana Bisantino & Giuliana Trisorio Liuzzi, 2008. "Debris-flow risk analysis in south Gargano watersheds (Southern-Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 44(1), pages 1-17, January.
    7. Kellenberg, Derek K. & Mobarak, Ahmed Mushfiq, 2008. "Does rising income increase or decrease damage risk from natural disasters?," Journal of Urban Economics, Elsevier, vol. 63(3), pages 788-802, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zexian Gu & Xiaoqing Zhao & Pei Huang & Junwei Pu & Xinyu Shi & Yungang Li, 2023. "Identification of Multi-Dimensional Relative Poverty and Governance Path at the Village Scale in an Alpine-Gorge Region: A Case Study in Nujiang, China," IJERPH, MDPI, vol. 20(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davlasheridze, Meri & Fisher-Vanden, Karen & Allen Klaiber, H., 2017. "The effects of adaptation measures on hurricane induced property losses: Which FEMA investments have the highest returns?," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 93-114.
    2. Stefan Kienberger & Thomas Blaschke & Rukhe Zaidi, 2013. "A framework for spatio-temporal scales and concepts from different disciplines: the ‘vulnerability cube’," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1343-1369, September.
    3. Noy, Ilan & Yonson, Rio, 2016. "A survey of the theory and measurement of economic vulnerability and resilience to natural hazards," Working Paper Series 19394, Victoria University of Wellington, School of Economics and Finance.
    4. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    5. Hyun Kim & David Marcouiller, 2015. "Considering disaster vulnerability and resiliency: the case of hurricane effects on tourism-based economies," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(3), pages 945-971, May.
    6. Sajid Ali & Rashid Haider & Wahid Abbas & Muhammad Basharat & Klaus Reicherter, 2021. "Empirical assessment of rockfall and debris flow risk along the Karakoram Highway, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2437-2460, April.
    7. Ilan Noy & Rio Yonson, 2018. "Economic Vulnerability and Resilience to Natural Hazards: A Survey of Concepts and Measurements," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    8. Chongming Wang & Brent Yarnal, 2012. "The vulnerability of the elderly to hurricane hazards in Sarasota, Florida," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 349-373, September.
    9. Kousky, Carolyn, 2014. "Informing climate adaptation: A review of the economic costs of natural disasters," Energy Economics, Elsevier, vol. 46(C), pages 576-592.
    10. Casey Zuzak & Matthew Mowrer & Emily Goodenough & Jordan Burns & Nicholas Ranalli & Jesse Rozelle, 2022. "The national risk index: establishing a nationwide baseline for natural hazard risk in the US," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2331-2355, November.
    11. Schumacher, Ingmar & Strobl, Eric, 2011. "Economic development and losses due to natural disasters: The role of hazard exposure," Ecological Economics, Elsevier, vol. 72(C), pages 97-105.
    12. Umer Khayyam, 2020. "Floods: impacts on livelihood, economic status and poverty in the north-west region of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1033-1056, July.
    13. Miao, Qing & Popp, David, 2014. "Necessity as the mother of invention: Innovative responses to natural disasters," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 280-295.
    14. Sanam K. Aksha & Christopher T. Emrich, 2020. "Benchmarking Community Disaster Resilience in Nepal," IJERPH, MDPI, vol. 17(6), pages 1-22, March.
    15. Yang Zhou & Ning Li & Wenxiang Wu & Jidong Wu, 2014. "Assessment of provincial social vulnerability to natural disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2165-2186, April.
    16. Alexandre Oliveira Tavares & José Leandro Barros & Angela Santos, 2017. "Multidimensional Approach for Tsunami Vulnerability Assessment: Framing the Territorial Impacts in Two Municipalities in Portugal," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 788-811, April.
    17. Kuan-Hui Elaine Lin & Hsiang-Chieh Lee & Thung-Hong Lin, 2017. "How does resilience matter? An empirical verification of the relationships between resilience and vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1229-1250, September.
    18. María Ibarrarán & Matthias Ruth & Sanjana Ahmad & Marisa London, 2009. "Climate change and natural disasters: macroeconomic performance and distributional impacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(3), pages 549-569, June.
    19. Christian Geiß & Hannes Taubenböck, 2013. "Remote sensing contributing to assess earthquake risk: from a literature review towards a roadmap," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 7-48, August.
    20. Albuquerque Sant'Anna, André, 2018. "Not So Natural: Unequal Effects of Public Policies on the Occurrence of Disasters," Ecological Economics, Elsevier, vol. 152(C), pages 273-281.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2223-:d:155055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.