Re-Evaluation of the Impacts of Dietary Preferences on Macroinvertebrate Trophic Sources: An Analysis of Seaweed Bed Habitats Using the Integration of Stable Isotope and Observational Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Linde, 2014. "The deviance information criterion: 12 years on," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 485-493, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gill Rowlands & David Whitney & Graham Moon, 2018. "Developing and Applying Geographical Synthetic Estimates of Health Literacy in GP Clinical Systems," IJERPH, MDPI, vol. 15(8), pages 1-8, August.
- Kai Yang & Qingqing Zhang & Xinyang Yu & Xiaogang Dong, 2023. "Bayesian inference for a mixture double autoregressive model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 188-207, May.
- Kelvyn Jones & David Manley & Ron Johnston & Dewi Owen, 2018. "Modelling residential segregation as unevenness and clustering: A multilevel modelling approach incorporating spatial dependence and tackling the MAUP," Environment and Planning B, , vol. 45(6), pages 1122-1141, November.
- Mutz, Rüdiger & Daniel, Hans-Dieter, 2018. "The bibliometric quotient (BQ), or how to measure a researcher’s performance capacity: A Bayesian Poisson Rasch model," Journal of Informetrics, Elsevier, vol. 12(4), pages 1282-1295.
- Papastamoulis, Panagiotis, 2018. "Overfitting Bayesian mixtures of factor analyzers with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 220-234.
- Han, Shengtong & Zhang, Hongmei & Karmaus, Wilfried & Roberts, Graham & Arshad, Hasan, 2017. "Adjusting background noise in cluster analyses of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 93-104.
- Jihye Kim & Wendy Olsen & Arkadiusz Wiśniowski, 2020. "A Bayesian Estimation of Child Labour in India," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 13(6), pages 1975-2001, December.
- Schubert, Anna-Lena & Nunez, Michael D. & Hagemann, Dirk & Vandekerckhove, Joachim, 2018. "Individual differences in cortical processing speed predict cognitive abilities: A model-based cognitive neuroscience account," OSF Preprints yfa8s, Center for Open Science.
- Shuhui Guo & Lihua Xiong & Jie Chen & Shenglian Guo & Jun Xia & Ling Zeng & Chong-Yu Xu, 2023. "Nonstationary Regional Flood Frequency Analysis Based on the Bayesian Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 659-681, January.
- AWLP Thilan & P Menéndez & JM McGree, 2023. "Assessing the ability of adaptive designs to capture trends in hard coral cover," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
- Hazelton, Martin L. & Parry, Katharina, 2016. "Statistical methods for comparison of day-to-day traffic models," Transportation Research Part B: Methodological, Elsevier, vol. 92(PA), pages 22-34.
- Muhammed Semakula & Franco̧is Niragire & Christel Faes, 2020. "Bayesian spatio-temporal modeling of malaria risk in Rwanda," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.
- Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.
- Getayeneh Antehunegn Tesema & Zemenu Tadesse Tessema & Stephane Heritier & Rob G. Stirling & Arul Earnest, 2023. "A Systematic Review of Joint Spatial and Spatiotemporal Models in Health Research," IJERPH, MDPI, vol. 20(7), pages 1-24, March.
- Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Bal, Guillaume & Scheuerell, Mark D. & Ward, Eric J., 2018. "Characterizing the strength of density dependence in at-risk species through Bayesian model averaging," Ecological Modelling, Elsevier, vol. 381(C), pages 1-9.
- Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
- Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles Taylor, 2023. "Bayesian CART models for insurance claims frequency," Papers 2303.01923, arXiv.org, revised Dec 2023.
- Bresson Georges & Chaturvedi Anoop & Rahman Mohammad Arshad & Shalabh, 2021.
"Seemingly unrelated regression with measurement error: estimation via Markov Chain Monte Carlo and mean field variational Bayes approximation,"
The International Journal of Biostatistics, De Gruyter, vol. 17(1), pages 75-97, May.
- Georges Bresson & Anoop Chaturvedi & Mohammad Arshad Rahman & Shalabh, 2020. "Seemingly Unrelated Regression with Measurement Error: Estimation via Markov chain Monte Carlo and Mean Field Variational Bayes Approximation," Papers 2006.07074, arXiv.org.
More about this item
Keywords
dietary preference; lab-based observation; SIMM; dietary process-based SIMM; seaweed bed habitat; trophic source estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2010-:d:152480. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.