IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i4p919-d137516.html
   My bibliography  Save this article

Efficiency, Conflicting Goals and Trade-Offs: A Nonparametric Analysis of the Water and Wastewater Service Industry in Italy

Author

Listed:
  • Corrado Lo Storto

    (Department of Industrial Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy)

Abstract

This paper presents a benchmarking study of the water and wastewater industry in Italy. A three-stage modeling approach was implemented to measure the efficiency of 53 utility operators. This approach is based on the implementation of network and conventional data envelopment analysis (DEA) to model the production process of the water service utility operators. In comparison to the conventional black-box or one-stage production model generally adopted in previous studies, the proposed approach provides information relative to the different efficiency components of the stages and blocks of the water service production process and its overall efficiency. Further, by shifting the efficiency analysis to a two-dimensional performance space, i.e., resource and market-efficiency, it offers a more comprehensive view of the water service industry and allows accounting for different business goals at the same time and for an investigation of industry trade-offs. Results show that the operators’ efficiencies in the Italian water service industry are generally variable and low. There are no water service utilities which are 100% efficient from the resource-efficiency perspective, and the maximum efficiency score is 0.545. Efficiency measurements suggest that there is a general orientation of the Italian water industry to not invest in upgrading and improving the infrastructure assets, and achieving an acceptable efficiency in the operations is critical to delivering water services to market in an efficient way. Only one utility operator is 100% efficient from the market-efficiency perspective. The low tariffs adopted by the water service operators do not allow the gaining of satisfactory service remuneration and the achievement of long-term business sustainability. The joint analysis of the resource and market efficiency scores indicates that there is a trade-off between the corresponding business goals.

Suggested Citation

  • Corrado Lo Storto, 2018. "Efficiency, Conflicting Goals and Trade-Offs: A Nonparametric Analysis of the Water and Wastewater Service Industry in Italy," Sustainability, MDPI, vol. 10(4), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:919-:d:137516
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/4/919/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/4/919/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Banker, Rajiv D. & Chang, Hsihui, 2006. "The super-efficiency procedure for outlier identification, not for ranking efficient units," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1311-1320, December.
    2. Yang, Hsu-Hao & Chang, Cheng-Yu, 0. "Using DEA window analysis to measure efficiencies of Taiwan's integrated telecommunication firms," Telecommunications Policy, Elsevier, vol. 33(1-2), pages 98-108, February.
    3. Pablo Cos & Enrique Moral-Benito, 2014. "Determinants of health-system efficiency: evidence from OECD countries," International Journal of Health Economics and Management, Springer, vol. 14(1), pages 69-93, March.
    4. Paradi, Joseph C. & Zhu, Haiyan, 2013. "A survey on bank branch efficiency and performance research with data envelopment analysis," Omega, Elsevier, vol. 41(1), pages 61-79.
    5. Byrnes, Joel & Crase, Lin & Dollery, Brian & Villano, Renato, 2010. "The relative economic efficiency of urban water utilities in regional New South Wales and Victoria," Resource and Energy Economics, Elsevier, vol. 32(3), pages 439-455, August.
    6. Wilson, Paul W, 1993. "Detecting Outliers in Deterministic Nonparametric Frontier Models with Multiple Outputs," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 319-323, July.
    7. Goncharuk, Anatoliy G. & Storto, Corrado lo, 2017. "Challenges and policy implications of gas reform in Italy and Ukraine: Evidence from a benchmarking analysis," Energy Policy, Elsevier, vol. 101(C), pages 456-466.
    8. Shi, Guang-Ming & Bi, Jun & Wang, Jin-Nan, 2010. "Chinese regional industrial energy efficiency evaluation based on a DEA model of fixing non-energy inputs," Energy Policy, Elsevier, vol. 38(10), pages 6172-6179, October.
    9. Romano, Giulia & Guerrini, Andrea, 2011. "Measuring and comparing the efficiency of water utility companies: A data envelopment analysis approach," Utilities Policy, Elsevier, vol. 19(3), pages 202-209.
    10. Ananda, Jayanath & Hampf, Benjamin, 2015. "Measuring environmentally sensitive productivity growth: An application to the urban water sector," Ecological Economics, Elsevier, vol. 116(C), pages 211-219.
    11. Chen, Yao & Cook, Wade D. & Li, Ning & Zhu, Joe, 2009. "Additive efficiency decomposition in two-stage DEA," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1170-1176, August.
    12. Abbott, Malcolm & Cohen, Bruce & Wang, Wei Chun, 2012. "The performance of the urban water and wastewater sectors in Australia," Utilities Policy, Elsevier, vol. 20(1), pages 52-63.
    13. Laurens Cherchye & Thierry Post, 2003. "Methodological Advances in DEA: A survey and an application for the Dutch electricity sector," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(4), pages 410-438, November.
    14. Hampf, Benjamin & Ananda, Jayanath, 2015. "Measuring environmentally sensitive productivity growth: An application to the urban water sector," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 77008, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Molinos-Senante, María & Maziotis, Alexandros & Sala-Garrido, Ramón, 2014. "The Luenberger productivity indicator in the water industry: An empirical analysis for England and Wales," Utilities Policy, Elsevier, vol. 30(C), pages 18-28.
    16. Cruz, Nuno Ferreira da & Carvalho, Pedro & Marques, Rui Cunha, 2013. "Disentangling the cost efficiency of jointly provided water and wastewater services," Utilities Policy, Elsevier, vol. 24(C), pages 70-77.
    17. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    18. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    19. Daniel Hollas & Kenneth Macleod & Stanley Stansell, 2002. "A data envelopment analysis of gas utilities' efficiency," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 26(2), pages 123-137, June.
    20. Tommaso Agasisti, 2013. "The efficiency of Italian secondary schools and the potential role of competition: a data envelopment analysis using OECD-PISA2006 data," Education Economics, Taylor & Francis Journals, vol. 21(5), pages 520-544, December.
    21. lo Storto, Corrado, 2018. "Ownership structure and the technical, cost, and revenue efficiency of Italian airports," Utilities Policy, Elsevier, vol. 50(C), pages 175-193.
    22. Marques, Rui Cunha & De Witte, Kristof, 2011. "Is big better? On scale and scope economies in the Portuguese water sector," Economic Modelling, Elsevier, vol. 28(3), pages 1009-1016, May.
    23. Lawrence M. Seiford & Joe Zhu, 1999. "Profitability and Marketability of the Top 55 U.S. Commercial Banks," Management Science, INFORMS, vol. 45(9), pages 1270-1288, September.
    24. Mamiza Haq & Michael Skully & Shams Pathan, 2010. "Efficiency of Microfinance Institutions: A Data Envelopment Analysis," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(1), pages 63-97, March.
    25. Huan Xu & Fangtao Liu, 2017. "Measuring the Efficiency of Education and Technology via DEA approach: Implications on National Development," Social Sciences, MDPI, vol. 6(4), pages 1-13, November.
    26. Corton, Maria Luisa & Berg, Sanford V., 2009. "Benchmarking Central American water utilities," Utilities Policy, Elsevier, vol. 17(3-4), pages 267-275, September.
    27. Abbott, Malcolm & Cohen, Bruce, 2009. "Productivity and efficiency in the water industry," Utilities Policy, Elsevier, vol. 17(3-4), pages 233-244, September.
    28. Kao, Chiang & Hwang, Shiuh-Nan, 2008. "Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan," European Journal of Operational Research, Elsevier, vol. 185(1), pages 418-429, February.
    29. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    30. Corrado Lo Storto, 2018. "A Nonparametric Economic Analysis of the US Natural Gas Transmission Infrastructure: Efficiency, Trade-Offs and Emerging Industry Configurations," Energies, MDPI, vol. 11(3), pages 1-24, February.
    31. Callens, Isabelle & Tyteca, Daniel, 1999. "Towards indicators of sustainable development for firms: A productive efficiency perspective," Ecological Economics, Elsevier, vol. 28(1), pages 41-53, January.
    32. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, December.
    33. Yasar A. Ozcan, 2008. "Health Care Benchmarking and Performance Evaluation," International Series in Operations Research and Management Science, Springer, number 978-0-387-75448-2, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vilarinho, Hermilio & D’Inverno, Giovanna & Nóvoa, Henriqueta & Camanho, Ana S., 2023. "Performance analytics for regulation in retail water utilities: Guiding asset management by identifying peers and targets," Utilities Policy, Elsevier, vol. 82(C).
    2. Mocholi-Arce, Manuel & Sala-Garrido, Ramon & Molinos-Senante, Maria & Maziotis, Alexandros, 2022. "Performance assessment of the Chilean water sector: A network data envelopment analysis approach," Utilities Policy, Elsevier, vol. 75(C).
    3. Carvalho, Anne Emília Costa & Sampaio, Raquel Menezes Bezerra & Sampaio, Luciano Menezes Bezerra, 2023. "The impact of regulation on the Brazilian water and sewerage companies’ efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    4. Vilarinho, Hermilio & D’Inverno, Giovanna & Nóvoa, Henriqueta & Camanho, Ana S., 2023. "The measurement of asset management performance of water companies," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    5. Ramon Sala-Garrido & Manuel Mocholí-Arce & María Molinos-Senante, 2021. "Assessing the Quality of Service of Water Companies: a ‘Benefit of the Doubt’ Composite Indicator," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(1), pages 371-387, May.
    6. Molinos-Senante, María & Maziotis, Alexandros & Sala-Garrido, Ramón, 2020. "Changes in the total costs of the English and Welsh water and sewerage industry: The decomposed effect of price and quantity inputs on efficiency," Utilities Policy, Elsevier, vol. 66(C).
    7. Fátima Pérez & Laura Delgado-Antequera & Trinidad Gómez, 2019. "A Two-Phase Method to Assess the Sustainability of Water Companies," Energies, MDPI, vol. 12(13), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carvalho, Anne Emília Costa & Sampaio, Luciano Menezes Bezerra, 2015. "Paths to universalize water and sewage services in Brazil: The role of regulatory authorities in promoting efficient service," Utilities Policy, Elsevier, vol. 34(C), pages 1-10.
    2. Corrado Lo Storto, 2018. "A Nonparametric Economic Analysis of the US Natural Gas Transmission Infrastructure: Efficiency, Trade-Offs and Emerging Industry Configurations," Energies, MDPI, vol. 11(3), pages 1-24, February.
    3. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    4. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
    5. Wade D. Cook & Chuanyin Guo & Wanghong Li & Zhepeng Li & Liang Liang & Joe Zhu, 2017. "Efficiency Measurement of Multistage Processes: Context Dependent Numbers of Stages," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(06), pages 1-18, December.
    6. Halkos, George & Tzeremes, Nickolaos, 2013. "An additive two-stage DEA approach creating sustainability efficiency indexes," MPRA Paper 44231, University Library of Munich, Germany.
    7. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    8. Liu, Yingnan & Wang, Ke, 2015. "Energy efficiency of China's industry sector: An adjusted network DEA (data envelopment analysis)-based decomposition analysis," Energy, Elsevier, vol. 93(P2), pages 1328-1337.
    9. Tavakoli, Ibrahim M. & Mostafaee, Amin, 2019. "Free disposal hull efficiency scores of units with network structures," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1027-1036.
    10. Tajbakhsh, Alireza & Hassini, Elkafi, 2018. "Evaluating sustainability performance in fossil-fuel power plants using a two-stage data envelopment analysis," Energy Economics, Elsevier, vol. 74(C), pages 154-178.
    11. Alexandros Maziotis & María Molinos-Senante & Ramon Sala-Garrido, 2017. "Assesing the Impact of Quality of Service on the Productivity of Water Industry: a Malmquist-Luenberger Approach for England and Wales," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(8), pages 2407-2427, June.
    12. Wu, Jie & Zhu, Qingyuan & Ji, Xiang & Chu, Junfei & Liang, Liang, 2016. "Two-stage network processes with shared resources and resources recovered from undesirable outputs," European Journal of Operational Research, Elsevier, vol. 251(1), pages 182-197.
    13. Jie Wu & Beibei Xiong & Qingxian An & Jiasen Sun & Huaqing Wu, 2017. "Total-factor energy efficiency evaluation of Chinese industry by using two-stage DEA model with shared inputs," Annals of Operations Research, Springer, vol. 255(1), pages 257-276, August.
    14. Ramón Sala-Garrido & Manuel Mocholí-Arce & María Molinos-Senante & Alexandros Maziotis, 2021. "Comparing Operational, Environmental and Eco-Efficiency of Water Companies in England and Wales," Energies, MDPI, vol. 14(12), pages 1-14, June.
    15. Goh, Kim Huat & See, Kok Fong, 2021. "Measuring the productivity growth of Malaysia's water sector: Implications for regulatory reform," Utilities Policy, Elsevier, vol. 71(C).
    16. Lu, Wen-Min & Liu, John S. & Kweh, Qian Long & Wang, Chung-Wei, 2016. "Exploring the benchmarks of the Taiwanese investment trust corporations: Management and investment efficiency perspectives," European Journal of Operational Research, Elsevier, vol. 248(2), pages 607-618.
    17. Hsiao-Yen Mao & Wen-Min Lu & Hsin-Yen Shieh, 2023. "Exploring the Influence of Environmental Investment on Multinational Enterprises’ Performance from the Sustainability and Marketability Efficiency Perspectives," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    18. Huang, Tai-Hsin & Chen, Kuan-Chen & Lin, Chung-I, 2018. "An extension from network DEA to copula-based network SFA: Evidence from the U.S. commercial banks in 2009," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 51-62.
    19. Lozano, Sebastián, 2016. "Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector," Omega, Elsevier, vol. 60(C), pages 73-84.
    20. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:919-:d:137516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.