IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i4p1153-d140643.html
   My bibliography  Save this article

First Approach to a Holistic Tool for Assessing RES Investment Feasibility

Author

Listed:
  • José María Flores-Arias

    (R&D Group ‘Instrumentation and Industrial Electronics, TIC-240’, Universidad de Córdoba, E-14071 Córdoba, Spain)

  • Lucio Ciabattoni

    (Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy)

  • Andrea Monteriù

    (Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy)

  • Francisco José Bellido-Outeiriño

    (R&D Group ‘Instrumentation and Industrial Electronics, TIC-240’, Universidad de Córdoba, E-14071 Córdoba, Spain)

  • Antonio Escribano

    (R&D Group ‘Instrumentation and Industrial Electronics, TIC-240’, Universidad de Córdoba, E-14071 Córdoba, Spain)

  • Emilio José Palacios-Garcia

    (Department of Energy Technology, Aalborg University, 9220 Aalborg East, Denmark)

Abstract

Combining availability, viability, sustainability, technical options, and environmental impact in an energy-planning project is a difficult job itself for the today’s engineers. This becomes harder if the potential investors also need to be persuaded. Moreover, the problem increases even more if various consumptions are considered, as their patterns depend to a large extent on the type of facility and the activity. It is therefore essential to develop tools to assess the balance between generation and demand in a given installation. In this paper, a valuable tool is developed for the seamless calculation of the integration possibilities of renewable energies and the assessment of derived technical, financial and environmental impacts. Furthermore, it also considers their interaction with the power grid or other networks, raising awareness of the polluting emissions responsible for global warming. Through a series of Structured Query Language databases and a dynamic data parameterization, the software is provided with sufficient information to encode, calculate, simulate and graphically display information on the generation and demand of electric, thermal and transport energy, all in a user-friendly environment, finally providing an evaluation and feasibility report.

Suggested Citation

  • José María Flores-Arias & Lucio Ciabattoni & Andrea Monteriù & Francisco José Bellido-Outeiriño & Antonio Escribano & Emilio José Palacios-Garcia, 2018. "First Approach to a Holistic Tool for Assessing RES Investment Feasibility," Sustainability, MDPI, vol. 10(4), pages 1-34, April.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1153-:d:140643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/4/1153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/4/1153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    2. Salom, Jaume & Marszal, Anna Joanna & Widén, Joakim & Candanedo, José & Lindberg, Karen Byskov, 2014. "Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data," Applied Energy, Elsevier, vol. 136(C), pages 119-131.
    3. Grandjean, A. & Adnot, J. & Binet, G., 2012. "A review and an analysis of the residential electric load curve models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6539-6565.
    4. Axelsson, E. & Harvey, S. & Berntsson, T., 2009. "A tool for creating energy market scenarios for evaluation of investments in energy intensive industry," Energy, Elsevier, vol. 34(12), pages 2069-2074.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bogdan Popa & Otilia Nedelcu & Florica Popa & Khalid Ahmad-Rashid & Eliza-Isabela Tică, 2021. "Small Hydropower Plant for Sustainable Electricity from RES Mix," Sustainability, MDPI, vol. 13(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zúñiga, K.V. & Castilla, I. & Aguilar, R.M., 2014. "Using fuzzy logic to model the behavior of residential electrical utility customers," Applied Energy, Elsevier, vol. 115(C), pages 384-393.
    2. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    3. Frayssinet, Loïc & Merlier, Lucie & Kuznik, Frédéric & Hubert, Jean-Luc & Milliez, Maya & Roux, Jean-Jacques, 2018. "Modeling the heating and cooling energy demand of urban buildings at city scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2318-2327.
    4. Huang, Yunyou & Zhan, Jianfeng & Luo, Chunjie & Wang, Lei & Wang, Nana & Zheng, Daoyi & Fan, Fanda & Ren, Rui, 2019. "An electricity consumption model for synthesizing scalable electricity load curves," Energy, Elsevier, vol. 169(C), pages 674-683.
    5. Hayn, Marian & Bertsch, Valentin & Zander, Anne & Nickel, Stefan & Fichtner, Wolf, 2016. "The impact of electricity tariffs on residential demand side flexibility," Working Paper Series in Production and Energy 14, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    6. Verdejo, Humberto & Awerkin, Almendra & Becker, Cristhian & Olguin, Gabriel, 2017. "Statistic linear parametric techniques for residential electric energy demand forecasting. A review and an implementation to Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 512-521.
    7. Guarino, Francesco & Cassarà, Pietro & Longo, Sonia & Cellura, Maurizio & Ferro, Erina, 2015. "Load match optimisation of a residential building case study: A cross-entropy based electricity storage sizing algorithm," Applied Energy, Elsevier, vol. 154(C), pages 380-391.
    8. Asaee, S. Rasoul & Ugursal, V. Ismet & Beausoleil-Morrison, Ian, 2019. "Development and analysis of strategies to facilitate the conversion of Canadian houses into net zero energy buildings," Energy Policy, Elsevier, vol. 126(C), pages 118-130.
    9. Yilmaz, S. & Chambers, J. & Patel, M.K., 2019. "Comparison of clustering approaches for domestic electricity load profile characterisation - Implications for demand side management," Energy, Elsevier, vol. 180(C), pages 665-677.
    10. Boßmann, T. & Staffell, I., 2015. "The shape of future electricity demand: Exploring load curves in 2050s Germany and Britain," Energy, Elsevier, vol. 90(P2), pages 1317-1333.
    11. Spandagos, Constantine & Ng, Tze Ling, 2018. "Fuzzy model of residential energy decision-making considering behavioral economic concepts," Applied Energy, Elsevier, vol. 213(C), pages 611-625.
    12. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    13. Sesil Koutra, 2022. "From ‘Zero’ to ‘Positive’ Energy Concepts and from Buildings to Districts—A Portfolio of 51 European Success Stories," Sustainability, MDPI, vol. 14(23), pages 1-23, November.
    14. Fumo, Nelson & Rafe Biswas, M.A., 2015. "Regression analysis for prediction of residential energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 332-343.
    15. Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
    16. Celik, Berk & Roche, Robin & Suryanarayanan, Siddharth & Bouquain, David & Miraoui, Abdellatif, 2017. "Electric energy management in residential areas through coordination of multiple smart homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 260-275.
    17. Seya, Hajime & Yamagata, Yoshiki & Nakamichi, Kumiko, 2016. "Creation of municipality level intensity data of electricity in Japan," Applied Energy, Elsevier, vol. 162(C), pages 1336-1344.
    18. Fumo, Nelson, 2014. "A review on the basics of building energy estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 53-60.
    19. Adeoye, Omotola & Spataru, Catalina, 2019. "Modelling and forecasting hourly electricity demand in West African countries," Applied Energy, Elsevier, vol. 242(C), pages 311-333.
    20. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1153-:d:140643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.