IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p750-d135456.html
   My bibliography  Save this article

Estimation of Leakage Ratio Using Principal Component Analysis and Artificial Neural Network in Water Distribution Systems

Author

Listed:
  • Dongwoo Jang

    (Department of Civil & Environmental Engineering, Incheon National University, Incheon 22012, Korea)

  • Hyoseon Park

    (Department of Civil & Environmental Engineering, Incheon National University, Incheon 22012, Korea)

  • Gyewoon Choi

    (Department of Civil & Environmental Engineering, Incheon National University, Incheon 22012, Korea)

Abstract

Leaks in a water distribution network (WDS) constitute losses of water supply caused by pipeline failure, operational loss, and physical factors. This has raised the need for studies on the factors affecting the leakage ratio and estimation of leakage volume in a water supply system. In this study, principal component analysis (PCA) and artificial neural network (ANN) were used to estimate the volume of water leakage in a WDS. For the study, six main effective parameters were selected and standardized data obtained through the Z-score method. The PCA-ANN model was devised and the leakage ratio was estimated. An accuracy assessment was performed to compare the measured leakage ratio to that of the simulated model. The results showed that the PCA-ANN method was more accurate for estimating the leakage ratio than a single ANN simulation. In addition, the estimation results differed according to the number of neurons in the ANN model’s hidden layers. In this study, an ANN with multiple hidden layers was found to be the best method for estimating the leakage ratio with 12–12 neurons. This suggested approaches to improve the accuracy of leakage ratio estimation, as well as a scientific approach toward the sustainable management of water distribution systems.

Suggested Citation

  • Dongwoo Jang & Hyoseon Park & Gyewoon Choi, 2018. "Estimation of Leakage Ratio Using Principal Component Analysis and Artificial Neural Network in Water Distribution Systems," Sustainability, MDPI, vol. 10(3), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:750-:d:135456
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/750/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/750/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Wrzesiński & Anna Markiewicz, 2022. "Prediction of Permeability Coefficient k in Sandy Soils Using ANN," Sustainability, MDPI, vol. 14(11), pages 1-13, May.
    2. KiJeon Nam & Pouya Ifaei & Sungku Heo & Gahee Rhee & Seungchul Lee & ChangKyoo Yoo, 2019. "An Efficient Burst Detection and Isolation Monitoring System for Water Distribution Networks Using Multivariate Statistical Techniques," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    3. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    4. María Molinos-Senante & Alexandros Maziotis, 2019. "Cost Efficiency of English and Welsh Water Companies: a Meta-Stochastic Frontier Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3041-3055, July.
    5. Roberto Magini & Manuela Moretti & Maria Antonietta Boniforti & Roberto Guercio, 2023. "A Machine-Learning Approach for Monitoring Water Distribution Networks (WDNs)," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    6. Katarzyna Pietrucha-Urbanik & Janusz R. Rak, 2020. "Consumers’ Perceptions of the Supply of Tap Water in Crisis Situations," Energies, MDPI, vol. 13(14), pages 1-20, July.
    7. Kızılöz, Burak & Şişman, Eyüp & Oruç, Halil Nurullah, 2022. "Predicting a water infrastructure leakage index via machine learning," Utilities Policy, Elsevier, vol. 75(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:750-:d:135456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.