IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3763-d176623.html
   My bibliography  Save this article

Theoretical Investigation of Gas Filling and Leaking in Inertial Confinement Fusion Hohlraum

Author

Listed:
  • Cheng Yu

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Suchen Wu

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Weibo Yang

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
    School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China)

Abstract

The gas filling and retention of inertial confinement fusion (ICF) hohlraum is an important issue in ICF studies. In this study, a theoretical model of gas filling and leaking processes for ICF hohlraum is developed based on the unified flow theory. The effects of the fill tube size and the filling pressure on the gas filling and leaking performance are investigated. The results indicate that an increase in the variation rate of the filling/leaking pressure leads to a larger maximum pressure difference between the inside and outside of the ICF hohlraum during the filling/leaking process. The critical pressure difference of the filling process is nearly equal to that of the leaking process. Increase in fill tube diameter and decrease in its length both lead to a lower probability of the rupture of polymeric films at two ends of the hohlraum, and thus increases the security of the hohlraum. In addition, a departure in cross sectional shape of fill tube from circle to rectangle triggers an increase in pressure difference between the inside and outside of the ICF hohlraum, which raises the risk of polymeric films rupture and decreases the security of the hohlraum structure.

Suggested Citation

  • Cheng Yu & Suchen Wu & Weibo Yang, 2018. "Theoretical Investigation of Gas Filling and Leaking in Inertial Confinement Fusion Hohlraum," Sustainability, MDPI, vol. 10(10), pages 1-12, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3763-:d:176623
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3763/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3763/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ugo Bardi, 2010. "Extracting Minerals from Seawater: An Energy Analysis," Sustainability, MDPI, vol. 2(4), pages 1-13, April.
    2. Hossam A.Gabbar & C. A. Barry Stoute & Daniel Bondarenko & Nicholas Tarsitano & Anas Abdel Rihem & Stefan Sirakov & Shraddhey Jani & Samskruthi Menashi, 2018. "X-Pinch Plasma Generation Testing for Neutron Source Development and Nuclear Fusion," Energies, MDPI, vol. 11(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    2. Segantin, Stefano & Testoni, Raffaella & Zucchetti, Massimo, 2019. "The lifetime determination of ARC reactor as a load-following plant in the energy framework," Energy Policy, Elsevier, vol. 126(C), pages 66-75.
    3. Harvey, L.D. Danny, 2018. "Resource implications of alternative strategies for achieving zero greenhouse gas emissions from light-duty vehicles by 2060," Applied Energy, Elsevier, vol. 212(C), pages 663-679.
    4. Nicholas, T.E.G. & Davis, T.P. & Federici, F. & Leland, J. & Patel, B.S. & Vincent, C. & Ward, S.H., 2021. "Re-examining the role of nuclear fusion in a renewables-based energy mix," Energy Policy, Elsevier, vol. 149(C).
    5. Vikström, Hanna & Davidsson, Simon & Höök, Mikael, 2013. "Lithium availability and future production outlooks," Applied Energy, Elsevier, vol. 110(C), pages 252-266.
    6. Adam Jan Zwierzyński & Wojciech Teper & Rafał Wiśniowski & Andrzej Gonet & Tomasz Buratowski & Tadeusz Uhl & Karol Seweryn, 2021. "Feasibility Study of Low Mass and Low Energy Consumption Drilling Devices for Future Space (Mining Surveying) Missions," Energies, MDPI, vol. 14(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3763-:d:176623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.