IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3751-d176434.html
   My bibliography  Save this article

Standardization of the Evaluation Index System for Low-Carbon Cities in China: A Case Study of Xiamen

Author

Listed:
  • Longyu Shi

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China)

  • Xueqin Xiang

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Wei Zhu

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Lijie Gao

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China)

Abstract

The construction of a reasonable evaluation index system for low-carbon cities is an important part of China’s green development strategy in urban areas. In this study, based on the theoretical framework for the concept of low-carbon cities, the perspectives from three index systems—that is, the Drivers, Pressures, State, Impact, Response model of intervention (DPSIR), a complex ecosystem, and a carbon source/sink process—were integrated to extract common indicators from existing evaluation index systems for low-carbon cities. Subsequently, a standardized evaluation index system for low-carbon cities that contained five indicators—carbon emission, low carbon production, low carbon consumption, low-carbon policy, and social economic development—was established. Thereafter, Xiamen was selected for an empirical analysis by determining the indicator weight with an entropy weight method and by carrying out a comprehensive evaluation using a linear summation model. The results showed that the weights of the five selected primary indicators for the evaluation of low-carbon cities were: low-carbon production > low-carbon consumption > social economic development > carbon emission > low-carbon policy. Among the secondary indicators, the average entropy weight of “pollution emission” was the highest at 0.1591, while the average entropy weight of “urbanization rate” was the lowest at 0.0360. Furthermore, the comprehensive index of low-carbon development in 2015 was higher than that in 2010, while the rate of economic growth was greater than the growth rate of carbon emission, which indicated that the relative decoupling of economic growth from carbon emission was basically achieved.

Suggested Citation

  • Longyu Shi & Xueqin Xiang & Wei Zhu & Lijie Gao, 2018. "Standardization of the Evaluation Index System for Low-Carbon Cities in China: A Case Study of Xiamen," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3751-:d:176434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Jing Jing & Ye, Bin & Ma, Xiao Ming, 2014. "The construction of Shenzhen׳s carbon emission trading scheme," Energy Policy, Elsevier, vol. 75(C), pages 17-21.
    2. Hak, Mao & Matsuoka, Yuzuru & Gomi, Kei, 2017. "A qualitative and quantitative design of low-carbon development in Cambodia: Energy policy," Energy Policy, Elsevier, vol. 100(C), pages 237-251.
    3. Tan, Sieting & Yang, Jin & Yan, Jinyue & Lee, Chewtin & Hashim, Haslenda & Chen, Bin, 2017. "A holistic low carbon city indicator framework for sustainable development," Applied Energy, Elsevier, vol. 185(P2), pages 1919-1930.
    4. Zhang, L.P. & Zhou, P., 2018. "A non-compensatory composite indicator approach to assessing low-carbon performance," European Journal of Operational Research, Elsevier, vol. 270(1), pages 352-361.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Yin & Jin Guo, 2022. "Ecological Effect Assessment of Low-Carbon City Construction in China," IJERPH, MDPI, vol. 19(21), pages 1-19, November.
    2. Boyang Sun & Xiaohua Yang & Yipeng Zhang & Xiaojuan Chen, 2019. "Evaluation of Water Use Efficiency of 31 Provinces and Municipalities in China Using Multi-Level Entropy Weight Method Synthesized Indexes and Data Envelopment Analysis," Sustainability, MDPI, vol. 11(17), pages 1-11, August.
    3. Francesco Pomponi & Bernardino D’Amico, 2020. "Low Energy Architecture and Low Carbon Cities: Exploring Links, Scales, and Environmental Impacts," Sustainability, MDPI, vol. 12(21), pages 1-6, November.
    4. He Zhang & Jingyi Peng & Rui Wang & Yuanyuan Guo & Jing He & Dahlia Yu & Jianxun Zhang, 2023. "Efficiency and Potential Evaluation to Promote Differentiated Low-Carbon Management in Chinese Counties," IJERPH, MDPI, vol. 20(4), pages 1-19, February.
    5. Joanna Godlewska & Edyta Sidorczuk-Pietraszko, 2019. "Taxonomic Assessment of Transition to the Green Economy in Polish Regions," Sustainability, MDPI, vol. 11(18), pages 1-25, September.
    6. Min Wang & Xianli Zhao & Qunxi Gong & Zhigeng Ji, 2019. "Measurement of Regional Green Economy Sustainable Development Ability Based on Entropy Weight-Topsis-Coupling Coordination Degree—A Case Study in Shandong Province, China," Sustainability, MDPI, vol. 11(1), pages 1-18, January.
    7. Cai, Bofeng & Guo, Huanxiu & Ma, Zipeng & Wang, Zhixuan & Dhakal, Shobhakar & Cao, Libin, 2019. "Benchmarking carbon emissions efficiency in Chinese cities: A comparative study based on high-resolution gridded data," Applied Energy, Elsevier, vol. 242(C), pages 994-1009.
    8. He Zhang & Jingyi Peng & Dahlia Yu & Lie You & Rui Wang, 2021. "Carbon Emission Governance Zones at the County Level to Promote Sustainable Development," Land, MDPI, vol. 10(2), pages 1-20, February.
    9. Jim Hart & Francesco Pomponi, 2021. "A Circular Economy: Where Will It Take Us?," Circular Economy and Sustainability, Springer, vol. 1(1), pages 127-141, June.
    10. Xiaohui Huang & Lili Wang & Qian Lu, 2018. "Vulnerability Assessment of Soil and Water Loss in Loess Plateau and Its Impact on Farmers’ Soil and Water Conservation Adaptive Behavior," Sustainability, MDPI, vol. 10(12), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Yin & Jin Guo, 2022. "Ecological Effect Assessment of Low-Carbon City Construction in China," IJERPH, MDPI, vol. 19(21), pages 1-19, November.
    2. Cai, Bofeng & Guo, Huanxiu & Ma, Zipeng & Wang, Zhixuan & Dhakal, Shobhakar & Cao, Libin, 2019. "Benchmarking carbon emissions efficiency in Chinese cities: A comparative study based on high-resolution gridded data," Applied Energy, Elsevier, vol. 242(C), pages 994-1009.
    3. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    4. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    5. Fei Yang & Chunchen Wang, 2023. "Clean energy, emission trading policy, and CO2 emissions: Evidence from China," Energy & Environment, , vol. 34(5), pages 1657-1673, August.
    6. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    7. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.
    8. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    9. Guorong Chen & Changyan Liu, 2023. "Can Low–Carbon City Development Stimulate Population Growth? Insights from China’s Low–Carbon Pilot Program," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    10. Chang, Kai & Chen, Rongda & Chevallier, Julien, 2018. "Market fragmentation, liquidity measures and improvement perspectives from China's emissions trading scheme pilots," Energy Economics, Elsevier, vol. 75(C), pages 249-260.
    11. Hongtao Jiang & Jian Yin & Yuanhong Qiu & Bin Zhang & Yi Ding & Ruici Xia, 2022. "Industrial Carbon Emission Efficiency of Cities in the Pearl River Basin: Spatiotemporal Dynamics and Driving Forces," Land, MDPI, vol. 11(8), pages 1-22, July.
    12. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    13. Tang, Ling & Shi, Jiarui & Bao, Qin, 2016. "Designing an emissions trading scheme for China with a dynamic computable general equilibrium model," Energy Policy, Elsevier, vol. 97(C), pages 507-520.
    14. Xiwen Fu & Shuxin Wang, 2022. "How to Promote Low-Carbon Cities with Blockchain Technology? A Blockchain-Based Low-Carbon Development Model for Chinese Cities," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    15. Zhanglan Wu & Jie Tang & Dong Wang, 2016. "Low Carbon Urban Transitioning in Shenzhen: A Multi-Level Environmental Governance Perspective," Sustainability, MDPI, vol. 8(8), pages 1-15, July.
    16. Yu, Dejian & Xu, Chao, 2017. "Mapping research on carbon emissions trading: a co-citation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1314-1322.
    17. Xing Zhang, 2018. "Short-Term Load Forecasting for Electric Bus Charging Stations Based on Fuzzy Clustering and Least Squares Support Vector Machine Optimized by Wolf Pack Algorithm," Energies, MDPI, vol. 11(6), pages 1-18, June.
    18. Rasool, Samma Faiz & Zaman, Shah & Jehan, Noor & Chin, Tachia & Khan, Saleem & Zaman, Qamar uz, 2022. "Investigating the role of the tech industry, renewable energy, and urbanization in sustainable environment: Policy directions in the context of developing economies," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    19. Janová, Jitka & Hampel, David & Nerudová, Danuše, 2019. "Design and validation of a tax sustainability index," European Journal of Operational Research, Elsevier, vol. 278(3), pages 916-926.
    20. Cong, Ren & Lo, Alex Y., 2017. "Emission trading and carbon market performance in Shenzhen, China," Applied Energy, Elsevier, vol. 193(C), pages 414-425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3751-:d:176434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.