IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3482-d172681.html
   My bibliography  Save this article

An Analysis of the Eco-Innovation Mechanism and Policies in the Pulp and Paper Industry Based on Coupled Game Theory and System Dynamics

Author

Listed:
  • Lin MA

    (School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Jiayu HU

    (School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China)

Abstract

The environment is the basis for the living and development of the human, and eco-innovation is the key driver of new economic growth. However, for some underdeveloped regions in China, it is still a challenge for the local government to get a balance between the goals of economic and environment. The paper selects the pulp and paper industry, which creates tremendous pollution to the environment and is closely related to the daily life. According to the particular characteristics of pulp and paper industry in Sichuan Province, the industry of pulp and paper of bamboo is redesigned to improve the local ecosystem, while increasing the income of local farmers. From the perspective of game theory, the relationships between the government, the enterprise, and the farmers are analyzed. The result shows that government increases the subsidy and penalty to the enterprise, which can increase the investment in eco-innovation, enhancing the competitiveness of enterprises and raising the income of farmers. Moreover, it can also improve the ecologically fragile areas by the utilization of bamboo park. In addition, in this paper, a system dynamics model is proposed to explore the impact of different policies on the environment. The results show that increasing the subsidy is a more efficient way to protect the environment, and is one of the important drivers to eco-innovation in some underdeveloped regions in China.

Suggested Citation

  • Lin MA & Jiayu HU, 2018. "An Analysis of the Eco-Innovation Mechanism and Policies in the Pulp and Paper Industry Based on Coupled Game Theory and System Dynamics," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3482-:d:172681
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3482/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3482/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haimanti Bhattacharya & Robert Innes, 2013. "Income and the Environment in Rural India: Is There a Poverty Trap?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(1), pages 42-69.
    2. Lindmark, Magnus & Bergquist, Ann-Kristin & Andersson, Lars Fredrik, 2011. "Energy transition, carbon dioxide reduction and output growth in the Swedish pulp and paper industry: 1973-2006," Energy Policy, Elsevier, vol. 39(9), pages 5449-5456, September.
    3. Longden, David & Brammer, John & Bastin, Lucy & Cooper, Nic, 2007. "Distributed or centralised energy-from-waste policy? Implications of technology and scale at municipal level," Energy Policy, Elsevier, vol. 35(4), pages 2622-2634, April.
    4. Peng, Lihong & Zeng, Xiaoling & Wang, Yejun & Hong, Gui-Bing, 2015. "Analysis of energy efficiency and carbon dioxide reduction in the Chinese pulp and paper industry," Energy Policy, Elsevier, vol. 80(C), pages 65-75.
    5. Ahmad Taher Azar, 2012. "System dynamics as a useful technique for complex systems," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 10(4), pages 377-410.
    6. Bergquist, Ann-Kristin & Keskitalo, E. Carina H., 2016. "Regulation versus deregulation. Policy divergence between Swedish forestry and the Swedish pulp and paper industry after the 1990s," Forest Policy and Economics, Elsevier, vol. 73(C), pages 10-17.
    7. Ericsson, Karin & Nilsson, Lars J. & Nilsson, Måns, 2011. "New energy strategies in the Swedish pulp and paper industry--The role of national and EU climate and energy policies," Energy Policy, Elsevier, vol. 39(3), pages 1439-1449, March.
    8. Virgilio Panapanaan & Tuomo Uotila & Anne Jalkala, 2014. "Creation and Alignment of the Eco-innovation Strategy Model to Regional Innovation Strategy: A Case from Lahti (Päijät-Häme Region), Finland," European Planning Studies, Taylor & Francis Journals, vol. 22(6), pages 1212-1234, June.
    9. Kesidou, Effie & Demirel, Pelin, 2012. "On the drivers of eco-innovations: Empirical evidence from the UK," Research Policy, Elsevier, vol. 41(5), pages 862-870.
    10. Wang, Yutao & Yang, Xuechun & Sun, Mingxing & Ma, Lei & Li, Xiao & Shi, Lei, 2016. "Estimating carbon emissions from the pulp and paper industry: A case study," Applied Energy, Elsevier, vol. 184(C), pages 779-789.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenguang Li & Zhenjun Qiu & Tao Fu, 2021. "The Role of Policy Perceptions and Entrepreneurs’ Preferences in Firms’ Response to Industry 4.0: The Case of Chinese Firms," Sustainability, MDPI, vol. 13(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Chen, Xiaobin & Man, Yi & Zheng, Qifu & Hu, Yusha & Li, Jigeng & Hong, Mengna, 2019. "Industrial verification of energy saving for the single-tier cylinder based paper drying process," Energy, Elsevier, vol. 170(C), pages 261-272.
    3. Henriksson, Eva & Söderholm, Patrik & Wårell, Linda, 2012. "Industrial electricity demand and energy efficiency policy: The role of price changes and private R&D in the Swedish pulp and paper industry," Energy Policy, Elsevier, vol. 47(C), pages 437-446.
    4. Wang, Yutao & Yang, Xuechun & Sun, Mingxing & Ma, Lei & Li, Xiao & Shi, Lei, 2016. "Estimating carbon emissions from the pulp and paper industry: A case study," Applied Energy, Elsevier, vol. 184(C), pages 779-789.
    5. Satu Lipiäinen & Eeva-Lotta Apajalahti & Esa Vakkilainen, 2023. "Decarbonization Prospects for the European Pulp and Paper Industry: Different Development Pathways and Needed Actions," Energies, MDPI, vol. 16(2), pages 1-18, January.
    6. Akvile Lawrence & Patrik Thollander & Magnus Karlsson, 2018. "Drivers, Barriers, and Success Factors for Improving Energy Management in the Pulp and Paper Industry," Sustainability, MDPI, vol. 10(6), pages 1-35, June.
    7. Rogers, John Geoffrey & Cooper, Samuel J. & Norman, Jon B., 2018. "Uses of industrial energy benchmarking with reference to the pulp and paper industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 23-37.
    8. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
    9. Man, Yi & Li, Jigeng & Hong, Mengna & Han, Yulin, 2020. "Energy transition for the low-carbon pulp and paper industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Lawrence, Akvile & Karlsson, Magnus & Thollander, Patrik, 2018. "Effects of firm characteristics and energy management for improving energy efficiency in the pulp and paper industry," Energy, Elsevier, vol. 153(C), pages 825-835.
    11. Shari, Babajide Epe & Dioha, Michael O. & Abraham-Dukuma, Magnus C. & Sobanke, Victor O. & Emodi, Nnaemeka V., 2022. "Clean cooking energy transition in Nigeria: Policy implications for Developing countries," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 319-343.
    12. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    13. Vitaliy Roud & Thomas Wolfgang Thurner, 2018. "The Influence of State‐Ownership on Eco‐Innovations in Russian Manufacturing Firms," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1213-1227, October.
    14. Stojčić, Nebojša, 2021. "Social and private outcomes of green innovation incentives in European advancing economies," Technovation, Elsevier, vol. 104(C).
    15. Thollander, Patrik & Kimura, Osamu & Wakabayashi, Masayo & Rohdin, Patrik, 2015. "A review of industrial energy and climate policies in Japan and Sweden with emphasis towards SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 504-512.
    16. Seokbeom Kwon & Jan Youtie & Alan Porter & Nils Newman, 2024. "How does regulatory uncertainty shape the innovation process? Evidence from the case of nanomedicine," The Journal of Technology Transfer, Springer, vol. 49(1), pages 262-302, February.
    17. Ana Labella-Fernández & M. Mar Serrano-Arcos & Belén Payán-Sánchez, 2021. "Firm Growth as a Driver of Sustainable Product Innovation: Mediation and Moderation Analysis. Evidence from Manufacturing Firms," IJERPH, MDPI, vol. 18(5), pages 1-22, March.
    18. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Caroline Danièle Mothe & Thuc Uyen Nguyen-Thi, 2017. "Persistent openness and environmental innovation: An empirical analysis of French manufacturing firms," Post-Print hal-01609129, HAL.
    20. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3482-:d:172681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.