IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3429-d172156.html
   My bibliography  Save this article

Construction and Recommendation of a Water Affair Knowledge Graph

Author

Listed:
  • Jianzhuo Yan

    (Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China)

  • Tiantian Lv

    (Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China)

  • Yongchuan Yu

    (Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China)

Abstract

Water affair data mainly consists of structured data and unstructured data, and the storage methods of data are diverse and heterogeneous. To meet the needs of water affair information integration, a method of constructing a knowledge graph using a combination of water affair structured and unstructured data is proposed. To meet the needs of a water information search, an information recommendation system for constructing a water affair knowledge graph is proposed. In this paper, the edit distance algorithm and latent Dirichlet allocation (LDA) algorithm are used to construct a water affair structured data and unstructured data combination knowledge graph, and this graph is validated based on the semantic distance algorithm. Finally, this paper uses the recall rate, accuracy rate, and F comprehensive results to compare the algorithms. The evaluation results of the edit distance algorithm and the LDA algorithm exceed 90%, which is greater than the comparison algorithm, thus confirming the validity and accuracy of the construction of a water affair knowledge graph. Furthermore, a set of water affair verification sets is used to verify the recommendation method, which proves the effectiveness of the recommended method.

Suggested Citation

  • Jianzhuo Yan & Tiantian Lv & Yongchuan Yu, 2018. "Construction and Recommendation of a Water Affair Knowledge Graph," Sustainability, MDPI, vol. 10(10), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3429-:d:172156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3429/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3429/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Zhang & Yuanqiao Wen & Chunhui Zhou & Hai Long & Dong Han & Fan Zhang & Changshi Xiao, 2019. "Construction of Knowledge Graphs for Maritime Dangerous Goods," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    2. Ziwei Xiao & Chunxiao Zhang, 2021. "Construction of Meteorological Simulation Knowledge Graph Based on Deep Learning Method," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    3. Wenling Liu & Yuexiang Yang & Xinyu Tu & Wan Wang, 2022. "ERSDMM: A Standard Digitalization Modeling Method for Emergency Response Based on Knowledge Graph," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    4. Yukun Jiang & Xin Gao & Wenxin Su & Jinrong Li, 2021. "Systematic Knowledge Management of Construction Safety Standards Based on Knowledge Graphs: A Case Study in China," IJERPH, MDPI, vol. 18(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3429-:d:172156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.