Patent Keyword Analysis Using Bayesian Zero-Inflated Model and Text Mining
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Arman Oganisian & Nandita Mitra & Jason A. Roy, 2021. "A Bayesian nonparametric model for zero‐inflated outcomes: Prediction, clustering, and causal estimation," Biometrics, The International Biometric Society, vol. 77(1), pages 125-135, March.
- Brian Neelon & Dongjun Chung, 2017. "The LZIP: A Bayesian latent factor model for correlated zero-inflated counts," Biometrics, The International Biometric Society, vol. 73(1), pages 185-196, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qihuang Zhang & Grace Y. Yi, 2023. "Zero‐inflated Poisson models with measurement error in the response," Biometrics, The International Biometric Society, vol. 79(2), pages 1089-1102, June.
- Eoghan O'Neill, 2022. "Type I Tobit Bayesian Additive Regression Trees for Censored Outcome Regression," Papers 2211.07506, arXiv.org, revised Feb 2024.
- Wenchen Liu & Yincai Tang & Ancha Xu, 2021. "Zero-and-one-inflated Poisson regression model," Statistical Papers, Springer, vol. 62(2), pages 915-934, April.
- Ma, Xuan & Brynjarsdóttir, Jenný & LaFramboise, Thomas, 2024. "A double Pólya-Gamma data augmentation scheme for a hierarchical Negative Binomial - Binomial data model," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
More about this item
Keywords
patent keyword data; zero inflation; zero-inflated Poisson regression model; Bayesian inference; text mining;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:7:y:2024:i:3:p:50-841:d:1449566. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.