IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v5y2022i3p36-605d854374.html
   My bibliography  Save this article

Quantile Regression Approach for Analyzing Similarity of Gene Expressions under Multiple Biological Conditions

Author

Listed:
  • Dianliang Deng

    (Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2, Canada
    These authors contributed equally to this work.)

  • Mashfiqul Huq Chowdhury

    (Department of Statistics, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
    These authors contributed equally to this work.)

Abstract

Temporal gene expression data contain ample information to characterize gene function and are now widely used in bio-medical research. A dense temporal gene expression usually shows various patterns in expression levels under different biological conditions. The existing literature investigates the gene trajectory using the mean function. However, temporal gene expression curves usually show a strong degree of heterogeneity under multiple conditions. As a result, rates of change for gene expressions may be different in non-central locations and a mean function model may not capture the non-central location of the gene expression distribution. Further, the mean regression model depends on the normality assumptions of the error terms of the model, which may be impractical when analyzing gene expression data. In this research, a linear quantile mixed model is used to find the trajectory of gene expression data. This method enables the changes in gene expression over time to be studied by estimating a family of quantile functions. A statistical test is proposed to test the similarity between two different gene expressions based on estimated parameters using a quantile model. Then, the performance of the proposed test statistic is examined using extensive simulation studies. Simulation studies demonstrate the good statistical performance of this proposed test statistic and show that this method is robust against normal error assumptions. As an illustration, the proposed method is applied to analyze a dataset of 18 genes in P. aeruginosa , expressed in 24 biological conditions. Furthermore, a minimum Mahalanobis distance is used to find the clustering tree for gene expressions.

Suggested Citation

  • Dianliang Deng & Mashfiqul Huq Chowdhury, 2022. "Quantile Regression Approach for Analyzing Similarity of Gene Expressions under Multiple Biological Conditions," Stats, MDPI, vol. 5(3), pages 1-23, July.
  • Handle: RePEc:gam:jstats:v:5:y:2022:i:3:p:36-605:d:854374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/5/3/36/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/5/3/36/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liqiong Chen & Antonio F. Galvao & Suyong Song, 2021. "Quantile Regression with Generated Regressors," Econometrics, MDPI, vol. 9(2), pages 1-35, April.
    2. Huiyu Huang & Tae-Hwy Lee, 2013. "Forecasting Value-at-Risk Using High-Frequency Information," Econometrics, MDPI, vol. 1(1), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hartwig, Benny & Meinerding, Christoph & Schüler, Yves S., 2021. "Identifying indicators of systemic risk," Journal of International Economics, Elsevier, vol. 132(C).
    2. Khan, Yasir & Hassan, Taimoor & Guiqin, Huang & Nabi, Ghulam, 2023. "Analyzing the impact of natural resources and rule of law on sustainable environment: A proposed policy framework for BRICS economies," Resources Policy, Elsevier, vol. 86(PA).
    3. Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
    4. Szymon Lis & Marcin Chlebus, 2021. "Comparison of the accuracy in VaR forecasting for commodities using different methods of combining forecasts," Working Papers 2021-11, Faculty of Economic Sciences, University of Warsaw.
    5. Jayeeta Bhattacharya, 2020. "Quantile regression with generated dependent variable and covariates," Papers 2012.13614, arXiv.org.
    6. Degiannakis, Stavros & Potamia, Artemis, 2017. "Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 176-190.
    7. Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
    8. Inuwa, Nasiru & Adamu, Sagir & Hamza, Yusuf & Sani, Mohammed Bello, 2023. "Does dichotomy between resource dependence and resource abundance matters for resource curse hypothesis? New evidence from quantiles via moments," Resources Policy, Elsevier, vol. 81(C).
    9. Seul-Ki Park & Ji-Eun Choi & Dong Wan Shin, 2017. "Value at risk forecasting for volatility index," Applied Economics Letters, Taylor & Francis Journals, vol. 24(21), pages 1613-1620, December.
    10. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    11. Mario Ivan Contreras-Valdez & Sonal Sahu & José Antonio Núñez-Mora & Roberto Joaquín Santillán-Salgado, 2024. "Value-at-Risk Effectiveness: A High-Frequency Data Approach with Semi-Heavy Tails," Risks, MDPI, vol. 12(3), pages 1-23, March.
    12. Christis Katsouris, 2023. "Estimating Conditional Value-at-Risk with Nonstationary Quantile Predictive Regression Models," Papers 2311.08218, arXiv.org, revised Apr 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:5:y:2022:i:3:p:36-605:d:854374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.