IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v5y2022i2p27-476d809560.html
   My bibliography  Save this article

Repeated-Measures Analysis in the Context of Heteroscedastic Error Terms with Factors Having Both Fixed and Random Levels

Author

Listed:
  • Lyson Chaka

    (Department of Statistics, University of South Africa, Johannesburg 1709, South Africa)

  • Peter Njuho

    (Department of Statistics, University of South Africa, Johannesburg 1709, South Africa)

Abstract

The design and analysis of experiments which involve factors each consisting of both fixed and random levels fit into linear mixed models. The assumed linear mixed-model design matrix takes either a full-rank or less-than-full-rank form. The complexity of the data structures of such experiments falls in the model-selection and parameter-estimation process. The fundamental consideration in the estimation process of linear models is the special case in which elements of the error vector are assumed equal and uncorrelated. However, different assumptions on the structure of the variance–covariance matrix of error vector in the estimation of parameters of a linear mixed model may be considered. We conceptualise a repeated-measures design with multiple between-subjects factors, in which each of these factors has both fixed and random levels. We focus on the construction of linear mixed-effects models, the estimation of variance components, and hypothesis testing in which the default covariance structure of homoscedastic error terms is not appropriate. We illustrate the proposed approach using longitudinal data fitted to a three-factor linear mixed-effects model. The novelty of this approach lies in the exploration of the fixed and random levels of the same factor and in the subsequent interaction effects of the fixed levels. In addition, we assess the differences between levels of the same factor and determine the proportion of the total variation accounted for by the random levels of the same factor.

Suggested Citation

  • Lyson Chaka & Peter Njuho, 2022. "Repeated-Measures Analysis in the Context of Heteroscedastic Error Terms with Factors Having Both Fixed and Random Levels," Stats, MDPI, vol. 5(2), pages 1-19, May.
  • Handle: RePEc:gam:jstats:v:5:y:2022:i:2:p:27-476:d:809560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/5/2/27/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/5/2/27/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Verbeke, Geert & Lesaffre, Emmanuel, 1997. "The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 23(4), pages 541-556, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanyuan Ma & Marc G. Genton, 2010. "Explicit estimating equations for semiparametric generalized linear latent variable models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 475-495, September.
    2. Peng Zhang & Peter X.-K. Song & Annie Qu & Tom Greene, 2008. "Efficient Estimation for Patient-Specific Rates of Disease Progression Using Nonnormal Linear Mixed Models," Biometrics, The International Biometric Society, vol. 64(1), pages 29-38, March.
    3. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    4. Huang, Xianzheng, 2011. "Detecting random-effects model misspecification via coarsened data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 703-714, January.
    5. Francis K. C. Hui & Samuel Müller & Alan H. Welsh, 2021. "Random Effects Misspecification Can Have Severe Consequences for Random Effects Inference in Linear Mixed Models," International Statistical Review, International Statistical Institute, vol. 89(1), pages 186-206, April.
    6. Warrington Nicole M. & Tilling Kate & Howe Laura D. & Paternoster Lavinia & Pennell Craig E. & Wu Yan Yan & Briollais Laurent, 2014. "Robustness of the linear mixed effects model to error distribution assumptions and the consequences for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(5), pages 567-587, October.
    7. Francis K.C. Hui & Nicole A. Hill & A.H. Welsh, 2022. "Assuming independence in spatial latent variable models: Consequences and implications of misspecification," Biometrics, The International Biometric Society, vol. 78(1), pages 85-99, March.
    8. Daniel McNeish & Jeffrey R. Harring & Denis Dumas, 2023. "A multilevel structured latent curve model for disaggregating student and school contributions to learning," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 545-575, June.
    9. Jacqmin-Gadda, Helene & Sibillot, Solenne & Proust, Cecile & Molina, Jean-Michel & Thiebaut, Rodolphe, 2007. "Robustness of the linear mixed model to misspecified error distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 5142-5154, June.
    10. Li, Erning & Pourahmadi, Mohsen, 2013. "An alternative REML estimation of covariance matrices in linear mixed models," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1071-1077.
    11. Tourani-Farani, Fahimeh & Kazemi, Iraj, 2022. "Transformed mixed-effects modeling of correlated bounded and positive data with a novel multivariate generalized Johnson distribution," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    12. Liang Li & Jun Shao & Mari Palta, 2005. "A Longitudinal Measurement Error Model with a Semicontinuous Covariate," Biometrics, The International Biometric Society, vol. 61(3), pages 824-830, September.
    13. Erning Li & Daowen Zhang & Marie Davidian, 2004. "Conditional Estimation for Generalized Linear Models When Covariates Are Subject-Specific Parameters in a Mixed Model for Longitudinal Measurements," Biometrics, The International Biometric Society, vol. 60(1), pages 1-7, March.
    14. Wei Pan & Thomas A. Louis, 2000. "A Linear Mixed-Effects Model for Multivariate Censored Data," Biometrics, The International Biometric Society, vol. 56(1), pages 160-166, March.
    15. Jara, Alejandro & Quintana, Fernando & San Marti­n, Ernesto, 2008. "Linear mixed models with skew-elliptical distributions: A Bayesian approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 5033-5045, July.
    16. Anders Skrondal & Sophia Rabe-Hesketh, 2022. "The Role of Conditional Likelihoods in Latent Variable Modeling," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 799-834, September.
    17. Erning Li & Naisyin Wang & Nae-Yuh Wang, 2007. "Joint Models for a Primary Endpoint and Multiple Longitudinal Covariate Processes," Biometrics, The International Biometric Society, vol. 63(4), pages 1068-1078, December.
    18. Reyhaneh Rikhtehgaran & Iraj Kazemi, 2013. "Semi-parametric Bayesian estimation of mixed-effects models using the multivariate skew-normal distribution," Computational Statistics, Springer, vol. 28(5), pages 2007-2027, October.
    19. Rendao Ye & Tonghui Wang & Saowanit Sukparungsee & Arjun Gupta, 2015. "Tests in variance components models under skew-normal settings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 885-904, October.
    20. Weiping Zhang & MengMeng Zhang & Yu Chen, 2020. "A Copula-Based GLMM Model for Multivariate Longitudinal Data with Mixed-Types of Responses," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-379, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:5:y:2022:i:2:p:27-476:d:809560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.