IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v5y2022i2p23-407d800444.html
   My bibliography  Save this article

Has the Market Started to Collapse or Will It Resist?

Author

Listed:
  • Yao Kuang

    (Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, New York, NY 11794, USA)

  • Raphael Douady

    (Sorbonne Economics Center, University Paris 1-Sorbonne, CNRS, CEDEX 13, 75647 Paris, France)

Abstract

Many people are concerned about the stock market in 2022 as it faces several threats, from rising inflation rates to geopolitical events. The S&P 500 Index has already dropped about 10% from the peak in early January 2022 until the end of February 2022. This paper aims at updating the crisis indicator to predict when the market may experience a significant drawdown, which we developed in Crisis Risk Prediction with Concavity from Polymodel (2022). This indicator uses regime switching and Polymodel theory to calculate the market concavity. We found that concavity had not increased in the past 6 months. We conclude that at present, the market does not bear inherent dynamic instability. This does not exclude a possible collapse which would be due to external events unrelated to financial markets.

Suggested Citation

  • Yao Kuang & Raphael Douady, 2022. "Has the Market Started to Collapse or Will It Resist?," Stats, MDPI, vol. 5(2), pages 1-7, April.
  • Handle: RePEc:gam:jstats:v:5:y:2022:i:2:p:23-407:d:800444
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/5/2/23/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/5/2/23/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    2. Raphaël Douady & Yao Kuang, 2020. "Crisis Risk Prediction with Concavity from Polymodel," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03018481, HAL.
    3. Xingxing Ye & Raphael Douady, 2018. "Systemic Risk Indicators Based on Nonlinear PolyModel," JRFM, MDPI, vol. 12(1), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raphaël Douady & Yao Kuang, 2020. "Crisis Risk Prediction with Concavity from Polymodel," Working Papers hal-03018481, HAL.
    2. Tian, Maoxi & El Khoury, Rim & Alshater, Muneer M., 2023. "The nonlinear and negative tail dependence and risk spillovers between foreign exchange and stock markets in emerging economies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    3. Andrew Patton, 2002. "(IAM Series No 001) On the Out-Of-Sample Importance of Skewness and Asymetric Dependence for Asset Allocation," FMG Discussion Papers dp431, Financial Markets Group.
    4. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    5. Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.
    6. Li, Xiao-Ming & Rose, Lawrence C., 2009. "The tail risk of emerging stock markets," Emerging Markets Review, Elsevier, vol. 10(4), pages 242-256, December.
    7. Klaus Duellmann & Martin Erdelmeier, 2009. "Crash Testing German Banks," International Journal of Central Banking, International Journal of Central Banking, vol. 5(3), pages 139-175, September.
    8. Małgorzata Doman & Ryszard Doman, 2013. "Dynamic linkages between stock markets: the effects of crises and globalization," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 87-112, August.
    9. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    10. Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015. "Aggregate volatility expectations and threshold CAPM," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.
    11. Marcel Wollschlager & Rudi Schafer, 2015. "Impact of non-stationarity on estimating and modeling empirical copulas of daily stock returns," Papers 1506.08054, arXiv.org.
    12. Kwon, Oh Kang & Satchell, Stephen, 2018. "The distribution of cross sectional momentum returns," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 225-241.
    13. Sleire, Anders D. & Støve, Bård & Otneim, Håkon & Berentsen, Geir Drage & Tjøstheim, Dag & Haugen, Sverre Hauso, 2022. "Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations," Finance Research Letters, Elsevier, vol. 46(PB).
    14. Hsu, Chih-Chiang & Yau, Ruey & Wu, Jyun-Yi, 2009. "Asymmetric Exchange Rate Exposure and Industry Characteristics : Evidence from Japanese Data," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 50(1), pages 57-69, June.
    15. Ștefan RUSU & Marcel BOLOȘ, 2024. "Bridging Tradition And Innovation: A Literature Review On Portfolio Optimization," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 33(1), pages 337-344, July.
    16. Charlot, Philippe & Darné, Olivier & Moussa, Zakaria, 2016. "Commodity returns co-movements: Fundamentals or “style” effect?," Journal of International Money and Finance, Elsevier, vol. 68(C), pages 130-160.
    17. Julien Chevallier & Florian Ielpo, 2013. "Volatility spillovers in commodity markets," Applied Economics Letters, Taylor & Francis Journals, vol. 20(13), pages 1211-1227, September.
    18. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    19. Carsten Bormann & Julia Schaumburg & Melanie Schienle, 2016. "Beyond Dimension two: A Test for Higher-Order Tail Risk," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 552-580.
    20. Chung, Y. Peter & Hong, Hyun A. & Kim, S. Thomas, 2019. "What causes the asymmetric correlation in stock returns?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 190-212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:5:y:2022:i:2:p:23-407:d:800444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.