IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v1y2018i1p14-203d190124.html
   My bibliography  Save this article

Statistical Inference for Progressive Stress Accelerated Life Testing with Birnbaum-Saunders Distribution

Author

Listed:
  • Naijun Sha

    (Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
    Current address: 500W University Ave., El Paso, TX 79968, USA.)

Abstract

As a result of the two-parameter Birnbaum–Saunders (BS) distribution being successful in modelling fatigue failure times, several extensions of this model have been explored from different aspects. In this article, we consider a progressive stress accelerated life testing for the BS model to introduce a generalized Birnbaum–Saunders (we call it Type-II GBS) distribution on the lifetime of products in the test. We outline some interesting properties of this highly flexible distribution, present the Fisher’s information in the maximum likelihood estimation method, and propose a new Bayesian approach for inference. Simulation studies are carried out to assess the performance of the methods under various settings of parameter values and sample sizes. Real data are analyzed for illustrative purposes to demonstrate the efficiency and accuracy of the proposed Bayesian method over the likelihood-based procedure.

Suggested Citation

  • Naijun Sha, 2018. "Statistical Inference for Progressive Stress Accelerated Life Testing with Birnbaum-Saunders Distribution," Stats, MDPI, vol. 1(1), pages 1-15, December.
  • Handle: RePEc:gam:jstats:v:1:y:2018:i:1:p:14-203:d:190124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/1/1/14/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/1/1/14/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naijun Sha & Rong Pan, 2014. "Bayesian analysis for step-stress accelerated life testing using weibull proportional hazard model," Statistical Papers, Springer, vol. 55(3), pages 715-726, August.
    2. Min Wang & Xiaoqian Sun & Chanseok Park, 2016. "Bayesian analysis of Birnbaum–Saunders distribution via the generalized ratio-of-uniforms method," Computational Statistics, Springer, vol. 31(1), pages 207-225, March.
    3. Lemonte, Artur J. & Cribari-Neto, Francisco & Vasconcellos, Klaus L.P., 2007. "Improved statistical inference for the two-parameter Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4656-4681, May.
    4. Xu, Ancha & Tang, Yincai, 2011. "Bayesian analysis of Birnbaum-Saunders distribution with partial information," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2324-2333, July.
    5. Ng, H. K. T. & Kundu, D. & Balakrishnan, N., 2003. "Modified moment estimation for the two-parameter Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 43(3), pages 283-298, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdalla Abdel-Ghaly & Hanan Aly & Elham Abdel-Rahman, 2023. "Bayesian Inference Under Ramp Stress Accelerated Life Testing Using Stan," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 132-174, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalanka P. Jayalath, 2021. "Fiducial Inference on the Right Censored Birnbaum–Saunders Data via Gibbs Sampler," Stats, MDPI, vol. 4(2), pages 1-15, May.
    2. Mahdi Teimouri, 2023. "Fast Bayesian Inference for Birnbaum-Saunders Distribution," Computational Statistics, Springer, vol. 38(2), pages 569-601, June.
    3. Min Wang & Xiaoqian Sun & Chanseok Park, 2016. "Bayesian analysis of Birnbaum–Saunders distribution via the generalized ratio-of-uniforms method," Computational Statistics, Springer, vol. 31(1), pages 207-225, March.
    4. Kalanka P. Jayalath, 2024. "Improved Bayesian Inferences for Right-Censored Birnbaum–Saunders Data," Mathematics, MDPI, vol. 12(6), pages 1-14, March.
    5. Meintanis, Simos G., 2010. "Inference procedures for the Birnbaum-Saunders distribution and its generalizations," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 367-373, February.
    6. Min Wang & Jing Zhao & Xiaoqian Sun & Chanseok Park, 2013. "Robust explicit estimation of the two-parameter Birnbaum--Saunders distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(10), pages 2259-2274, October.
    7. Kundu, Debasis & Kannan, Nandini & Balakrishnan, N., 2008. "On the hazard function of Birnbaum-Saunders distribution and associated inference," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2692-2702, January.
    8. Wang, Bing Xing, 2012. "Generalized interval estimation for the Birnbaum–Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4320-4326.
    9. Cysneiros, Audrey H.M.A. & Cribari-Neto, Francisco & Araújo Jr., Carlos A.G., 2008. "On Birnbaum-Saunders inference," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4939-4950, July.
    10. Barreto, Larissa Santana & Cysneiros, Audrey H.M.A. & Cribari-Neto, Francisco, 2013. "Improved Birnbaum–Saunders inference under type II censoring," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 68-81.
    11. Xu, Ancha & Tang, Yincai, 2011. "Bayesian analysis of Birnbaum-Saunders distribution with partial information," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2324-2333, July.
    12. Fonseca, Rodney V. & Cribari-Neto, Francisco, 2018. "Inference in a bimodal Birnbaum–Saunders model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 146(C), pages 134-159.
    13. Li, Ai-Ping & Xie, Feng-Chang, 2012. "Diagnostics for a class of survival regression models with heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4204-4214.
    14. Naijun Sha, 2019. "A New Inference Approach for Type-II Generalized Birnbaum-Saunders Distribution," Stats, MDPI, vol. 2(1), pages 1-16, February.
    15. Xu Guo & Hecheng Wu & Gaorong Li & Qiuyue Li, 2017. "Inference for the common mean of several Birnbaum–Saunders populations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 941-954, April.
    16. Xu, Ancha & Tang, Yincai, 2010. "Reference analysis for Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 185-192, January.
    17. Bhatti, Chad R., 2010. "The Birnbaum–Saunders autoregressive conditional duration model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(10), pages 2062-2078.
    18. Barros, Michelli & Paula, Gilberto A. & Leiva, Víctor, 2009. "An R implementation for generalized Birnbaum-Saunders distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1511-1528, February.
    19. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.
    20. Lemonte, Artur J. & Cribari-Neto, Francisco & Vasconcellos, Klaus L.P., 2007. "Improved statistical inference for the two-parameter Birnbaum-Saunders distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4656-4681, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:1:y:2018:i:1:p:14-203:d:190124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.