IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2021i4p78-d537746.html
   My bibliography  Save this article

The Use of Discriminant Analysis to Assess the Risk of Bankruptcy of Enterprises in Crisis Conditions Using the Example of the Tourism Sector in Poland

Author

Listed:
  • Joanna Wieprow

    (The Faculty of Finance and Management, WSB University, 53-609 Wrocław, Poland)

  • Agnieszka Gawlik

    (The Faculty of Economics, WSB University, 45-372 Opole, Poland)

Abstract

The aim of this article is to use multiple discriminant analysis (MDA) and logit models to assess the risk of bankruptcy of companies in the Polish tourism sector in the crisis conditions caused by the COVID-19 pandemic. A review of the literature is used to select models appropriate to analyze the risk of bankruptcy of tourism enterprises listed on the Warsaw Stock Exchange (WSE). The data are from half-year financial statements (the first half of 2019 and 2020, respectively). The obtained results are compared with the current values of the Altman EM-score model and selected financial ratios. An analysis allowed the estimation of the risk of bankruptcy of enterprises from the tourism sector in Poland as well as the assessment of the prognostic value of these models in the tourism sector and the risk of a collapse of this market in Poland. The article fills the research gap created by the negligible use of solvency analysis of the tourism sector and constitutes the basis for estimating the risk of collapse of the tourism sector in a crisis situation.

Suggested Citation

  • Joanna Wieprow & Agnieszka Gawlik, 2021. "The Use of Discriminant Analysis to Assess the Risk of Bankruptcy of Enterprises in Crisis Conditions Using the Example of the Tourism Sector in Poland," Risks, MDPI, vol. 9(4), pages 1-11, April.
  • Handle: RePEc:gam:jrisks:v:9:y:2021:i:4:p:78-:d:537746
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/4/78/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/4/78/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Y. & Gaunt, C. & Gray, S., 2010. "A comparison of alternative bankruptcy prediction models," Journal of Contemporary Accounting and Economics, Elsevier, vol. 6(1), pages 34-45.
    2. Gémar, Germán & Moniche, Laura & Morales, Antonio J., 2016. "Survival analysis of the Spanish hotel industry," Tourism Management, Elsevier, vol. 54(C), pages 428-438.
    3. Soo Y. Kim, 2008. "Prediction of hotel bankruptcy using support vector machine, artificial neural network, logistic regression, and multivariate discriminant analysis," The Service Industries Journal, Taylor & Francis Journals, vol. 31(3), pages 441-468, December.
    4. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    5. Laitinen, Erkki K. & Laitinen, Teija, 2000. "Bankruptcy prediction: Application of the Taylor's expansion in logistic regression," International Review of Financial Analysis, Elsevier, vol. 9(4), pages 327-349.
    6. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    7. José Miguel Rodríguez-Antón & María del Mar Alonso-Almeida, 2020. "COVID-19 Impacts and Recovery Strategies: The Case of the Hospitality Industry in Spain," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    8. Arianna Agosto & Daniel Felix Ahelegbey, 2022. "Default count-based network models for credit contagion," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(1), pages 139-152, January.
    9. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    10. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    11. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    12. Jonas Mackevičius & Ruta Šneidere & Daiva Tamulevičienė, 2018. "The waves of enterprises bankruptcy and the factors that determine them: the case of Latvia and Lithuania," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(1), pages 100-114, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Da Van Huynh & Long Hai Duong & Thuy Thi Kim Truong & Nhan Trong Nguyen, 2022. "Destination Responses to COVID-19 Waves: Is “Green Zone” Initiative a Holy Grail for Tourism Recovery?," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    2. Da Van Huynh & Thuy Thi Kim Truong & Long Hai Duong & Nhan Trong Nguyen & Giang Vu Huong Dao & Canh Ngoc Dao, 2021. "The COVID-19 Pandemic and Its Impacts on Tourism Business in a Developing City: Insight from Vietnam," Economies, MDPI, vol. 9(4), pages 1-17, November.
    3. Dorota Czerwińska-Kayzer & Joanna Florek & Ryszard Staniszewski & Dariusz Kayzer, 2021. "Application of Canonical Variate Analysis to Compare Different Groups of Food Industry Companies in Terms of Financial Liquidity and Profitability," Energies, MDPI, vol. 14(15), pages 1-16, August.
    4. Asyrofa Rahmi & Hung-Yuan Lu & Deron Liang & Dinda Novitasari & Chih-Fong Tsai, 2023. "Role of Comprehensive Income in Predicting Bankruptcy," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 689-720, August.
    5. Tijana Matejić & Snežana Knežević & Vesna Bogojević Arsić & Tijana Obradović & Stefan Milojević & Miljan Adamović & Aleksandra Mitrović & Marko Milašinović & Dragoljub Simonović & Goran Milošević & Ma, 2022. "Assessing the Impact of the COVID-19 Crisis on Hotel Industry Bankruptcy Risk through Novel Forecasting Models," Sustainability, MDPI, vol. 14(8), pages 1-44, April.
    6. Weng Hoe Lam & Weng Siew Lam & Kah Fai Liew & Pei Fun Lee, 2023. "Decision Analysis on the Financial Performance of Companies Using Integrated Entropy-Fuzzy TOPSIS Model," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
    7. Marko Špiler & Tijana Matejić & Snežana Knežević & Marko Milašinović & Aleksandra Mitrović & Vesna Bogojević Arsić & Tijana Obradović & Dragoljub Simonović & Vukašin Despotović & Stefan Milojević & Mi, 2022. "Assessment of the Bankruptcy Risk in the Hotel Industry as a Condition of the COVID-19 Crisis Using Time-Delay Neural Networks," Sustainability, MDPI, vol. 15(1), pages 1-54, December.
    8. Jing Wang & Yi Wang & Yinchun He & Zhangxiang Zhu, 2022. "Exploring the Factors of Rural Tourism Recovery in the Post-COVID-19 Era Based on the Grounded Theory: A Case Study of Tianxi Village in Hunan Province, China," Sustainability, MDPI, vol. 14(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    2. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    3. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    4. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    5. Pranith K. Roy & Krishnendu Shaw, 2023. "A credit scoring model for SMEs using AHP and TOPSIS," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 372-391, January.
    6. Deng, Shangkun & Luo, Qunfang & Zhu, Yingke & Ning, Hong & Shimada, Tatsuro, 2024. "Financial risk forewarning with an interpretable ensemble learning approach: An empirical analysis based on Chinese listed companies," Pacific-Basin Finance Journal, Elsevier, vol. 85(C).
    7. Khaled Halteh & Kuldeep Kumar & Adrian Gepp, 2018. "Using Cutting-Edge Tree-Based Stochastic Models to Predict Credit Risk," Risks, MDPI, vol. 6(2), pages 1-13, May.
    8. Kerstin Lopatta & Mario Albert Gloger & Reemda Jaeschke, 2017. "Can Language Predict Bankruptcy? The Explanatory Power of Tone in 10‐K Filings," Accounting Perspectives, John Wiley & Sons, vol. 16(4), pages 315-343, December.
    9. Nawaf Almaskati & Ron Bird & Yue Lu & Danny Leung, 2019. "The Role of Corporate Governance and Estimation Methods in Predicting Bankruptcy," Working Papers in Economics 19/16, University of Waikato.
    10. Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
    11. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    12. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    13. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    14. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    15. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    16. Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
    17. Barboza, Flavio & Altman, Edward, 2024. "Predicting financial distress in Latin American companies: A comparative analysis of logistic regression and random forest models," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    18. Edith Navarrete Marneou & Edgar Sansores Guerrero, 2011. "Quintano Roo Mexico Micro, Small And Medium Sized Business Failure: An Multi Variable Analysis, El Fracaso De Las Micro, Pequenas Y Medianas Empresas En Quintana Roo, Mexico: Un Analisis Multivariante," Revista Internacional Administracion & Finanzas, The Institute for Business and Finance Research, vol. 4(3), pages 21-33.
    19. Fatima Zahra Azayite & Said Achchab, 2019. "A hybrid neural network model based on improved PSO and SA for bankruptcy prediction," Papers 1907.12179, arXiv.org.
    20. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2021:i:4:p:78-:d:537746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.