IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2019i3p83-d253948.html
   My bibliography  Save this article

Logarithmic Asymptotics for Probability of Component-Wise Ruin in a Two-Dimensional Brownian Model

Author

Listed:
  • Krzysztof Dȩbicki

    (Mathematical Institute, University of Wrocław, 50-137 Wrocław, Poland
    These authors contributed equally to this work.)

  • Lanpeng Ji

    (School of Mathematics, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK)

  • Tomasz Rolski

    (Mathematical Institute, University of Wrocław, 50-137 Wrocław, Poland
    These authors contributed equally to this work.)

Abstract

We consider a two-dimensional ruin problem where the surplus process of business lines is modelled by a two-dimensional correlated Brownian motion with drift. We study the ruin function P ( u ) for the component-wise ruin (that is both business lines are ruined in an infinite-time horizon), where u is the same initial capital for each line. We measure the goodness of the business by analysing the adjustment coefficient, that is the limit of − ln P ( u ) / u as u tends to infinity, which depends essentially on the correlation ρ of the two surplus processes. In order to work out the adjustment coefficient we solve a two-layer optimization problem.

Suggested Citation

  • Krzysztof Dȩbicki & Lanpeng Ji & Tomasz Rolski, 2019. "Logarithmic Asymptotics for Probability of Component-Wise Ruin in a Two-Dimensional Brownian Model," Risks, MDPI, vol. 7(3), pages 1-21, August.
  • Handle: RePEc:gam:jrisks:v:7:y:2019:i:3:p:83-:d:253948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/3/83/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/3/83/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Junhai & Liu, Zaiming & Tang, Qihe, 2007. "On the ruin probabilities of a bidimensional perturbed risk model," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 185-195, July.
    2. Dȩbicki, Krzysztof & Hashorva, Enkelejd & Ji, Lanpeng & Rolski, Tomasz, 2018. "Extremal behavior of hitting a cone by correlated Brownian motion with drift," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4171-4206.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    2. Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
    3. Anita Behme & Philipp Lukas Strietzel, 2021. "A $$2~{\times }~2$$ 2 × 2 random switching model and its dual risk model," Queueing Systems: Theory and Applications, Springer, vol. 99(1), pages 27-64, October.
    4. Dan Zhu & Ming Zhou & Chuancun Yin, 2023. "Finite-Time Ruin Probabilities of Bidimensional Risk Models with Correlated Brownian Motions," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    5. Xiaowen Shen & Kaiyong Wang & Yang Yang, 2024. "Asymptotics for Finite-Time Ruin Probabilities of a Dependent Bidimensional Risk Model with Stochastic Return and Subexponential Claims," Mathematics, MDPI, vol. 12(19), pages 1-12, September.
    6. Hashorva, Enkelejd, 2019. "Approximation of some multivariate risk measures for Gaussian risks," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 330-340.
    7. Shen, Xinmei & Zhang, Yi, 2013. "Ruin probabilities of a two-dimensional risk model with dependent risks of heavy tail," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1787-1799.
    8. Liu, Jingchen & Woo, Jae-Kyung, 2014. "Asymptotic analysis of risk quantities conditional on ruin for multidimensional heavy-tailed random walks," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 1-9.
    9. Yiqing Chen & Jiajun Liu & Yang Yang, 2023. "Ruin under Light-Tailed or Moderately Heavy-Tailed Insurance Risks Interplayed with Financial Risks," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    10. Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
    11. Gordienko, E. & Vázquez-Ortega, P., 2018. "Continuity inequalities for multidimensional renewal risk models," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 48-54.
    12. Hongmin Xiao & Lin Xie, 2018. "Asymptotic Ruin Probability of a Bidimensional Risk Model Based on Entrance Processes with Constant Interest Rate," Risks, MDPI, vol. 6(4), pages 1-12, November.
    13. Gong, Lan & Badescu, Andrei L. & Cheung, Eric C.K., 2012. "Recursive methods for a multi-dimensional risk process with common shocks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 109-120.
    14. Dȩbicki, Krzysztof & Hashorva, Enkelejd & Wang, Longmin, 2020. "Extremes of vector-valued Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5802-5837.
    15. Li, Jinzhu, 2017. "A note on the finite-time ruin probability of a renewal risk model with Brownian perturbation," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 49-55.
    16. Lu, Dawei & Zhang, Bin, 2016. "Some asymptotic results of the ruin probabilities in a two-dimensional renewal risk model with some strongly subexponential claims," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 20-29.
    17. Florin Avram & Sooie-Hoe Loke, 2018. "On Central Branch/Reinsurance Risk Networks: Exact Results and Heuristics," Risks, MDPI, vol. 6(2), pages 1-18, April.
    18. Zhang, Yuanyuan & Wang, Wensheng, 2012. "Ruin probabilities of a bidimensional risk model with investment," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 130-138.
    19. Albrecher, Hansjörg & Cheung, Eric C.K. & Liu, Haibo & Woo, Jae-Kyung, 2022. "A bivariate Laguerre expansions approach for joint ruin probabilities in a two-dimensional insurance risk process," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 96-118.
    20. Yang, Haizhong & Li, Jinzhu, 2014. "Asymptotic finite-time ruin probability for a bidimensional renewal risk model with constant interest force and dependent subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 185-192.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:3:p:83-:d:253948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.