Model Efficiency and Uncertainty in Quantile Estimation of Loss Severity Distributions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bignozzi, Valeria & Puccetti, Giovanni & Rüschendorf, Ludger, 2015. "Reducing model risk via positive and negative dependence assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 17-26.
- Thomas Kaiser & Vytaras Brazauskas, 2006. "Interval Estimation of Actuarial Risk Measures," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(4), pages 249-268.
- Daoping Yu & Vytaras Brazauskas, 2017. "Model Uncertainty in Operational Risk Modeling Due to Data Truncation: A Single Risk Case," Risks, MDPI, vol. 5(3), pages 1-17, September.
- Samanthi, Ranadeera G.M. & Wei, Wei & Brazauskas, Vytaras, 2017. "Comparing the riskiness of dependent portfolios via nested L-statistics," Annals of Actuarial Science, Cambridge University Press, vol. 11(2), pages 237-252, September.
- Cairns, Andrew J. G., 2000. "A discussion of parameter and model uncertainty in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 313-330, December.
- Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
- Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
- Vytaras Brazauskas, 2009. "Quantile estimation and the statistical relative efficiency curve," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 289-301.
- Bruce Jones & Ričardas Zitikis, 2003. "Empirical Estimation of Risk Measures and Related Quantities," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 44-54.
- Vytaras Brazauskas & Andreas Kleefeld, 2016. "Modeling Severity and Measuring Tail Risk of Norwegian Fire Claims," North American Actuarial Journal, Taylor & Francis Journals, vol. 20(1), pages 1-16, January.
- Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
- Modarres, Reza & Nayak, Tapan K. & Gastwirth, Joseph L., 2002. "Estimation of upper quantiles under model and parameter uncertainty," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 529-554, June.
- Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
- Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
- Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2024.
"Robust distortion risk measures,"
Mathematical Finance, Wiley Blackwell, vol. 34(3), pages 774-818, July.
- Carole Bernard & Silvana M. Pesenti & Steven Vanduffel, 2022. "Robust Distortion Risk Measures," Papers 2205.08850, arXiv.org, revised Mar 2023.
- Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
- Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
- Liu, Peng & Wang, Ruodu & Wei, Linxiao, 2020. "Is the inf-convolution of law-invariant preferences law-invariant?," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 144-154.
- Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
- Claußen, Arndt & Rösch, Daniel & Schmelzle, Martin, 2019. "Hedging parameter risk," Journal of Banking & Finance, Elsevier, vol. 100(C), pages 111-121.
- Bernard, Carole & Kazzi, Rodrigue & Vanduffel, Steven, 2020. "Range Value-at-Risk bounds for unimodal distributions under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 9-24.
- Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
- Yuyu Chen & Liyuan Lin & Ruodu Wang, 2021. "Risk Aggregation under Dependence Uncertainty and an Order Constraint," Papers 2104.07718, arXiv.org, revised Oct 2021.
- Baishuai Zuo & Chuancun Yin & Jing Yao, 2023. "Multivariate range Value-at-Risk and covariance risk measures for elliptical and log-elliptical distributions," Papers 2305.09097, arXiv.org.
- Krätschmer, Volker & Schied, Alexander & Zähle, Henryk, 2017. "Domains of weak continuity of statistical functionals with a view toward robust statistics," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 1-19.
- Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020.
"A cost-benefit analysis of capital requirements adjusted for model risk,"
Journal of Corporate Finance, Elsevier, vol. 65(C).
- Walter Farkas & Fulvia Fringuellotti & Radu Tunaru, 2020. "A Cost-Benefit Analysis of Capital Requirements Adjusted for Model Risk," Swiss Finance Institute Research Paper Series 20-86, Swiss Finance Institute.
- Tobias Fissler & Johanna F. Ziegel, 2019. "Evaluating Range Value at Risk Forecasts," Papers 1902.04489, arXiv.org, revised Nov 2020.
- Jose Blanchet & Henry Lam & Yang Liu & Ruodu Wang, 2020. "Convolution Bounds on Quantile Aggregation," Papers 2007.09320, arXiv.org, revised Sep 2024.
- Müller, Fernanda Maria & Santos, Samuel Solgon & Gössling, Thalles Weber & Righi, Marcelo Brutti, 2022. "Comparison of risk forecasts for cryptocurrencies: A focus on Range Value at Risk," Finance Research Letters, Elsevier, vol. 48(C).
- Schneider, Judith C. & Schweizer, Nikolaus, 2015. "Robust measurement of (heavy-tailed) risks: Theory and implementation," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 183-203.
- Labopin-Richard T. & Gamboa F. & Garivier A. & Iooss B., 2016. "Bregman superquantiles. Estimation methods and applications," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-33, March.
- An Chen & Mitja Stadje & Fangyuan Zhang, 2020. "On the equivalence between Value-at-Risk- and Expected Shortfall-based risk measures in non-concave optimization," Papers 2002.02229, arXiv.org, revised Jun 2022.
More about this item
Keywords
data truncation and censoring; empirical estimator; maximum likelihood; model uncertainty; percentile matching; quantile estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:2:p:55-:d:231229. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.