IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2019i2p48-d227464.html
   My bibliography  Save this article

Optimal Excess-of-Loss Reinsurance for Stochastic Factor Risk Models

Author

Listed:
  • Matteo Brachetta

    (Department of Economics, University of Chieti-Pescara, 42-65127 Pescara, Italy
    Current address: Viale Pindaro, 42-65127 Pescara, Italy.
    These authors contributed equally to this work.)

  • Claudia Ceci

    (Department of Economics, University of Chieti-Pescara, 42-65127 Pescara, Italy
    Current address: Viale Pindaro, 42-65127 Pescara, Italy.
    These authors contributed equally to this work.)

Abstract

We study the optimal excess-of-loss reinsurance problem when both the intensity of the claims arrival process and the claim size distribution are influenced by an exogenous stochastic factor. We assume that the insurer’s surplus is governed by a marked point process with dual-predictable projection affected by an environmental factor and that the insurance company can borrow and invest money at a constant real-valued risk-free interest rate r . Our model allows for stochastic risk premia, which take into account risk fluctuations. Using stochastic control theory based on the Hamilton-Jacobi-Bellman equation, we analyze the optimal reinsurance strategy under the criterion of maximizing the expected exponential utility of the terminal wealth. A verification theorem for the value function in terms of classical solutions of a backward partial differential equation is provided. Finally, some numerical results are discussed.

Suggested Citation

  • Matteo Brachetta & Claudia Ceci, 2019. "Optimal Excess-of-Loss Reinsurance for Stochastic Factor Risk Models," Risks, MDPI, vol. 7(2), pages 1-23, May.
  • Handle: RePEc:gam:jrisks:v:7:y:2019:i:2:p:48-:d:227464
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/2/48/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/2/48/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Huiming & Deng, Chao & Yue, Shengjie & Deng, Yingchun, 2015. "Optimal reinsurance and investment problem for an insurer with counterparty risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 242-254.
    2. Claudia Ceci, 2012. "Utility Maximization With Intermediate Consumption Under Restricted Information For Jump Market Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1-34.
    3. Liang, Zhibin & Yuen, Kam Chuen & Guo, Junyi, 2011. "Optimal proportional reinsurance and investment in a stock market with Ornstein-Uhlenbeck process," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 207-215, September.
    4. Meng, Hui & Zhang, Xin, 2010. "Optimal Risk Control for The Excess of Loss Reinsurance Policies," ASTIN Bulletin, Cambridge University Press, vol. 40(1), pages 179-197, May.
    5. Xin Zhang & Ming Zhou & Junyi Guo, 2007. "Optimal combinational quota‐share and excess‐of‐loss reinsurance policies in a dynamic setting," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(1), pages 63-71, January.
    6. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    7. Claudia Ceci & Anna Gerardi, 2006. "A Model For High Frequency Data Under Partial Information: A Filtering Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(04), pages 555-576.
    8. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    9. Irgens, Christian & Paulsen, Jostein, 2004. "Optimal control of risk exposure, reinsurance and investments for insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 21-51, August.
    10. Brachetta, M. & Ceci, C., 2019. "Optimal proportional reinsurance and investment for stochastic factor models," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 15-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Brachetta & Hanspeter Schmidli, 2020. "Optimal reinsurance and investment in a diffusion model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 341-361, June.
    2. Matteo Brachetta & Claudia Ceci, 2021. "Optimal Reinsurance Problem under Fixed Cost and Exponential Preferences," Mathematics, MDPI, vol. 9(4), pages 1-20, February.
    3. Brachetta, M. & Ceci, C., 2020. "A BSDE-based approach for the optimal reinsurance problem under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 1-16.
    4. Matteo Brachetta & Claudia Ceci, 2019. "A BSDE-based approach for the optimal reinsurance problem under partial information," Papers 1910.05999, arXiv.org, revised May 2020.
    5. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2021. "Optimal Reinsurance and Investment under Common Shock Dependence Between Financial and Actuarial Markets," Papers 2105.07524, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Brachetta & Claudia Ceci, 2019. "Optimal excess-of-loss reinsurance for stochastic factor risk models," Papers 1904.05422, arXiv.org.
    2. Xue, Xiaole & Wei, Pengyu & Weng, Chengguo, 2019. "Derivatives trading for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 40-53.
    3. Brachetta, M. & Ceci, C., 2020. "A BSDE-based approach for the optimal reinsurance problem under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 1-16.
    4. Matteo Brachetta & Claudia Ceci, 2019. "A BSDE-based approach for the optimal reinsurance problem under partial information," Papers 1910.05999, arXiv.org, revised May 2020.
    5. Brachetta, M. & Ceci, C., 2019. "Optimal proportional reinsurance and investment for stochastic factor models," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 15-33.
    6. Matteo Brachetta & Claudia Ceci, 2018. "Optimal proportional reinsurance and investment for stochastic factor models," Papers 1806.01223, arXiv.org.
    7. Matteo Brachetta & Hanspeter Schmidli, 2020. "Optimal reinsurance and investment in a diffusion model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 341-361, June.
    8. Danping Li & Dongchen Li & Virginia R. Young, 2017. "Optimality of Excess-Loss Reinsurance under a Mean-Variance Criterion," Papers 1703.01984, arXiv.org, revised Mar 2017.
    9. Zhu, Huiming & Deng, Chao & Yue, Shengjie & Deng, Yingchun, 2015. "Optimal reinsurance and investment problem for an insurer with counterparty risk," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 242-254.
    10. Li, Danping & Rong, Ximin & Zhao, Hui, 2015. "Time-consistent reinsurance–investment strategy for a mean–variance insurer under stochastic interest rate model and inflation risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 28-44.
    11. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2021. "Optimal Reinsurance and Investment under Common Shock Dependence Between Financial and Actuarial Markets," Papers 2105.07524, arXiv.org.
    12. Zhibin Liang & Junna Bi & Kam Chuen Yuen & Caibin Zhang, 2016. "Optimal mean–variance reinsurance and investment in a jump-diffusion financial market with common shock dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 155-181, August.
    13. Hiroaki Hata & Shuenn-Jyi Sheu & Li-Hsien Sun, 2019. "Expected exponential utility maximization of insurers with a general diffusion factor model : The complete market case," Papers 1903.08957, arXiv.org.
    14. Shen, Yang & Zeng, Yan, 2015. "Optimal investment–reinsurance strategy for mean–variance insurers with square-root factor process," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 118-137.
    15. Matteo Brachetta & Hanspeter Schmidli, 2019. "Optimal Reinsurance and Investment in a Diffusion Model," Papers 1903.12426, arXiv.org.
    16. Zhang, Nan & Jin, Zhuo & Li, Shuanming & Chen, Ping, 2016. "Optimal reinsurance under dynamic VaR constraint," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 232-243.
    17. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    18. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    19. Nian Yao & Zhiming Yang, 2017. "Optimal excess-of-loss reinsurance and investment problem for an insurer with default risk under a stochastic volatility model," Papers 1704.08234, arXiv.org.
    20. Wang, Ning & Zhang, Nan & Jin, Zhuo & Qian, Linyi, 2019. "Robust non-zero-sum investment and reinsurance game with default risk," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 115-132.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:2:p:48-:d:227464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.