IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v6y2018i4p110-d173250.html
   My bibliography  Save this article

Numerical Ruin Probability in the Dual Risk Model with Risk-Free Investments

Author

Listed:
  • Sooie-Hoe Loke

    (Department of Mathematics, Central Washington University, 400 East University Way, Ellensburg, WA 98926, USA)

  • Enrique Thomann

    (Department of Mathematics, Oregon State University, Corvallis, OR 97331-4605, USA)

Abstract

In this paper, a dual risk model under constant force of interest is considered. The ruin probability in this model is shown to satisfy an integro-differential equation, which can then be written as an integral equation. Using the collocation method, the ruin probability can be well approximated for any gain distributions. Examples involving exponential, uniform, Pareto and discrete gains are considered. Finally, the same numerical method is applied to the Laplace transform of the time of ruin.

Suggested Citation

  • Sooie-Hoe Loke & Enrique Thomann, 2018. "Numerical Ruin Probability in the Dual Risk Model with Risk-Free Investments," Risks, MDPI, vol. 6(4), pages 1-13, October.
  • Handle: RePEc:gam:jrisks:v:6:y:2018:i:4:p:110-:d:173250
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/6/4/110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/6/4/110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sundt, Bjorn & Teugels, Jozef L., 1995. "Ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 7-22, April.
    2. Avanzi, Benjamin & U. Gerber, Hans & S.W. Shiu, Elias, 2007. "Optimal dividends in the dual model," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 111-123, July.
    3. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    4. Fanzi Zeng & Jisheng Xu, 2013. "The Perturbed Dual Risk Model with Constant Interest and a Threshold Dividend Strategy," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-9, November.
    5. Yang, Yang & Wang, Yuebao, 2010. "Asymptotics for ruin probability of some negatively dependent risk models with a constant interest rate and dominatedly-varying-tailed claims," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 143-154, February.
    6. Yinghui Dong & Guojing Wang, 2008. "On a compounding assets model with positive jumps," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(1), pages 21-30, January.
    7. Schmidli, Hanspeter, 2015. "Extended Gerber–Shiu functions in a risk model with interest," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 271-275.
    8. Jun Cai & Runhuan Feng & Gordon E. Willmot, 2009. "The Compound Poisson Surplus Model with Interest and Liquid Reserves: Analysis of the Gerber–Shiu Discounted Penalty Function," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 401-423, September.
    9. Cai, Jun & Feng, Runhuan & Willmot, Gordon E., 2009. "Analysis of the Compound Poisson Surplus Model with Liquid Reserves, Interest and Dividends," ASTIN Bulletin, Cambridge University Press, vol. 39(1), pages 225-247, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia Adamska & Łukasz Bielak & Joanna Janczura & Agnieszka Wyłomańska, 2022. "From Multi- to Univariate: A Product Random Variable with an Application to Electricity Market Transactions: Pareto and Student’s t -Distribution Case," Mathematics, MDPI, vol. 10(18), pages 1-29, September.
    2. Jiandong Ren & Kristina Sendova & Ričardas Zitikis, 2019. "Special Issue “Risk, Ruin and Survival: Decision Making in Insurance and Finance”," Risks, MDPI, vol. 7(3), pages 1-7, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheung, Eric C.K., 2011. "A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 384-397, May.
    2. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    3. Schmidli, Hanspeter, 2015. "Extended Gerber–Shiu functions in a risk model with interest," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 271-275.
    4. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    5. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
    6. Eric C. K. Cheung & David Landriault, 2012. "On a Risk Model with Surplus-dependent Premium and Tax Rates," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 233-251, June.
    7. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.
    8. Min Song & Rong Wu & Xin Zhang, 2008. "Total duration of negative surplus for the dual model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(6), pages 591-600, November.
    9. Meng, Hui & Siu, Tak Kuen, 2011. "On optimal reinsurance, dividend and reinvestment strategies," Economic Modelling, Elsevier, vol. 28(1-2), pages 211-218, January.
    10. Wu, Rong & Wang, Guojing & Zhang, Chunsheng, 2005. "On a joint distribution for the risk process with constant interest force," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 365-374, June.
    11. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    12. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    13. Gerber, Hans U. & Smith, Nathaniel, 2008. "Optimal dividends with incomplete information in the dual model," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 227-233, October.
    14. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    15. Rulliere, Didier & Loisel, Stephane, 2005. "The win-first probability under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 421-442, December.
    16. Ng, Andrew C.Y., 2009. "On a dual model with a dividend threshold," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 315-324, April.
    17. Yang, Hailiang & Zhang, Lihong, 2001. "On the distribution of surplus immediately after ruin under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 247-255, October.
    18. Zhu, Jinxia & Yang, Hailiang, 2009. "On differentiability of ruin functions under Markov-modulated models," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1673-1695, May.
    19. Yuen, Kam C. & Wang, Guojing & Li, Wai K., 2007. "The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 104-112, January.
    20. Feng, Runhuan, 2009. "On the total operating costs up to default in a renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 305-314, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:6:y:2018:i:4:p:110-:d:173250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.