IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v6y2018i3p87-d165887.html
   My bibliography  Save this article

On the Evaluation of the Distribution of a General Multivariate Collective Model: Recursions versus Fast Fourier Transform

Author

Listed:
  • Raluca Vernic

    (Faculty of Mathematics and Computer Science, Ovidius University of Constanta, 900527 Constanta, Romania
    Institute for Mathematical Statistics and Applied Mathematics, 050711 Bucharest, Romania)

Abstract

With the purpose of introducing dependence between different types of claims, multivariate collective models have recently gained a lot of attention. However, when it comes to the evaluation of the corresponding compound distribution, the problems increase with the dimensionality of the model. In this paper, we consider a multivariate collective model that generalizes a model already studied from the point of view of recursive and FFT evaluation of its distribution, and we extend the same study to the general model. With the intention to see which method works better for this general model, we compare the recursive method with the FFT technique, and emphasize the advantages and drawbacks of each one, based on numerical examples.

Suggested Citation

  • Raluca Vernic, 2018. "On the Evaluation of the Distribution of a General Multivariate Collective Model: Recursions versus Fast Fourier Transform," Risks, MDPI, vol. 6(3), pages 1-14, August.
  • Handle: RePEc:gam:jrisks:v:6:y:2018:i:3:p:87-:d:165887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/6/3/87/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/6/3/87/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vernic, Raluca, 2018. "On the evaluation of some multivariate compound distributions with Sarmanov’s counting distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 184-193.
    2. Grübel, Rudolf & Hermesmeier, Renate, 1999. "Computation of Compound Distributions I: Aliasing Errors and Exponential Tilting," ASTIN Bulletin, Cambridge University Press, vol. 29(2), pages 197-214, November.
    3. Sundt, Bjørn, 1999. "On Multivariate Panjer Recursions," ASTIN Bulletin, Cambridge University Press, vol. 29(1), pages 29-45, May.
    4. Panjer, Harry H., 1981. "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 22-26, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vernic, Raluca, 2018. "On the evaluation of some multivariate compound distributions with Sarmanov’s counting distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 184-193.
    2. Paul Embrechts & Marco Frei, 2009. "Panjer recursion versus FFT for compound distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 497-508, July.
    3. Xiaolin Luo & Pavel V. Shevchenko, 2009. "Computing Tails of Compound Distributions Using Direct Numerical Integration," Papers 0904.0830, arXiv.org, revised Feb 2010.
    4. Sundt, Bjorn, 2002. "Recursive evaluation of aggregate claims distributions," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 297-322, June.
    5. Sundt, Bjorn, 2000. "The multivariate De Pril transform," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 123-136, August.
    6. Li Qin & Susan M. Pitts, 2012. "Nonparametric Estimation of the Finite-Time Survival Probability with Zero Initial Capital in the Classical Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 919-936, December.
    7. Pavel V. Shevchenko, 2010. "Calculation of aggregate loss distributions," Papers 1008.1108, arXiv.org.
    8. Sundt, Bjorn, 2003. "Some recursions for moments of compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 487-496, December.
    9. Cordelia Rudolph & Uwe Schmock, 2020. "Multivariate Collective Risk Model: Dependent Claim Numbers and Panjer’s Recursion," Risks, MDPI, vol. 8(2), pages 1-31, May.
    10. Eisele, Karl-Theodor, 2006. "Recursions for compound phase distributions," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 149-156, February.
    11. Jonas Hirz & Uwe Schmock & Pavel V. Shevchenko, 2017. "Actuarial Applications and Estimation of Extended CreditRisk+," Risks, MDPI, vol. 5(2), pages 1-29, March.
    12. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    13. Venegas-Martínez, Francisco & Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo, 2015. "Riesgo operativo en el sector salud en Colombia: 2013," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(43), pages 7-36, segundo s.
    14. Dhaene, Jan & Vandebroek, Martina, 1995. "Recursions for the individual model," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 31-38, April.
    15. Ivanovs, Jevgenijs & Boxma, Onno, 2015. "A bivariate risk model with mutual deficit coverage," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 126-134.
    16. Eisele, Karl-Theodor, 2008. "Recursions for multivariate compound phase variables," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 65-72, February.
    17. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1995. "Market Time and Asset Price Movements Theory and Estimation," CIRANO Working Papers 95s-32, CIRANO.
    18. Nabil Kazi-Tani, 2020. "Indifference Pricing of Reinsurance with Reinstatements Using Coherent Monetary Criteria," Working Papers hal-01742638, HAL.
    19. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    20. P. Del Moral & G. W. Peters & Ch. Verg'e, 2012. "An introduction to particle integration methods: with applications to risk and insurance," Papers 1210.3851, arXiv.org, revised Oct 2012.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:6:y:2018:i:3:p:87-:d:165887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.