IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v5y2017i1p7-d88504.html
   My bibliography  Save this article

Change Point Estimation in Panel Data without Boundary Issue

Author

Listed:
  • Barbora Peštová

    (Department of Medical Informatics and Biostatistics, Institute of Computer Science, The Czech Academy of Sciences, Pod Vodárenskou věží 271/2, 18207 Prague 8, Czech Republic
    These authors contributed equally to this work.)

  • Michal Pešta

    (Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 18675 Prague 8, Czech Republic
    These authors contributed equally to this work.)

Abstract

Panel data of our interest consist of a moderate number of panels, while the panels contain a small number of observations. An estimator of common breaks in panel means without a boundary issue for this kind of scenario is proposed. In particular, the novel estimator is able to detect a common break point even when the change happens immediately after the first time point or just before the last observation period. Another advantage of the elaborated change point estimator is that it results in the last observation in situations with no structural breaks. The consistency of the change point estimator in panel data is established. The results are illustrated through a simulation study. As a by-product of the developed estimation technique, a theoretical utilization for correlation structure estimation, hypothesis testing and bootstrapping in panel data is demonstrated. A practical application to non-life insurance is presented, as well.

Suggested Citation

  • Barbora Peštová & Michal Pešta, 2017. "Change Point Estimation in Panel Data without Boundary Issue," Risks, MDPI, vol. 5(1), pages 1-22, January.
  • Handle: RePEc:gam:jrisks:v:5:y:2017:i:1:p:7-:d:88504
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/5/1/7/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/5/1/7/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dukpa Kim, 2014. "Common breaks in time trends for large panel data with a factor structure," Econometrics Journal, Royal Economic Society, vol. 17(3), pages 301-337, October.
    2. Bai, Jushan, 2010. "Common breaks in means and variances for panel data," Journal of Econometrics, Elsevier, vol. 157(1), pages 78-92, July.
    3. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    4. Marie Hušková & Claudia Kirch, 2012. "Bootstrapping sequential change-point tests for linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 673-708, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    2. Shahnaz Parsaeian, 2024. "Stein-like Common Correlated Effects Estimation under Structural Breaks," Econometrics, MDPI, vol. 12(2), pages 1-23, April.
    3. Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
    4. Matúš Maciak & Michal Pešta & Barbora Peštová, 2020. "Changepoint in dependent and non-stationary panels," Statistical Papers, Springer, vol. 61(4), pages 1385-1407, August.
    5. Bai, Jushan & Han, Xu & Shi, Yutang, 2020. "Estimation and inference of change points in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 219(1), pages 66-100.
    6. Jiang, Peiyun & Kurozumi, Eiji, 2021. "A new test for common breaks in heterogeneous panel data models," Discussion paper series HIAS-E-107, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    7. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    8. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    9. Oka, Tatsushi & Perron, Pierre, 2018. "Testing for common breaks in a multiple equations system," Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.
    10. Badi H. Baltagi & Chihwa Kao & Long Liu, 2017. "Estimation and identification of change points in panel models with nonstationary or stationary regressors and error term," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 85-102, March.
    11. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    12. Bada, O. & Kneip, A. & Liebl, D. & Mensinger, T. & Gualtieri, J. & Sickles, R.C., 2022. "A wavelet method for panel models with jump discontinuities in the parameters," Journal of Econometrics, Elsevier, vol. 226(2), pages 399-422.
    13. Horváth, Lajos & Rice, Gregory, 2019. "Asymptotics for empirical eigenvalue processes in high-dimensional linear factor models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 138-165.
    14. Okui, Ryo & Wang, Wendun, 2021. "Heterogeneous structural breaks in panel data models," Journal of Econometrics, Elsevier, vol. 220(2), pages 447-473.
    15. Eunju Hwang & Dong Wan Shin, 2017. "Stationary bootstrapping for common mean change detection in cross-sectionally dependent panels," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 767-787, November.
    16. Jan Ditzen & Yiannis Karavias & Joakim Westerlund, 2022. "Multiple Structural Breaks in Interactive Effects Panel Data and the Impact of Quantitative Easing on Bank Lending," Papers 2211.06707, arXiv.org, revised Jan 2023.
    17. Degui Li & Junhui Qian & Liangjun Su, 2016. "Panel Data Models With Interactive Fixed Effects and Multiple Structural Breaks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1804-1819, October.
    18. Badi H. Baltagi & Qu Feng & Chihwa Kao, 2019. "Structural changes in heterogeneous panels with endogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 883-892, September.
    19. Barbora Peštová & Michal Pešta, 2015. "Testing structural changes in panel data with small fixed panel size and bootstrap," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(6), pages 665-689, August.
    20. Haoran Lu & Dianpeng Wang, 2024. "Grouped Change-Points Detection and Estimation in Panel Data," Mathematics, MDPI, vol. 12(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:5:y:2017:i:1:p:7-:d:88504. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.