IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v2y2014i2p226-248d37193.html
   My bibliography  Save this article

Demand of Insurance under the Cost-of-Capital Premium Calculation Principle

Author

Listed:
  • Michael Merz

    (Department of Business Administration, University of Hamburg, 20146 Hamburg, Germany)

  • Mario V. Wüthrich

    (RiskLab, Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland
    Swiss Finance Institute SFI Professor, 8006 Zurich, Switzerland)

Abstract

We study the optimal insurance design problem. This is a risk sharing problem between an insured and an insurer. The main novelty in this paper is that we study this optimization problem under a risk-adjusted premium calculation principle for the insurance cover. This risk-adjusted premium calculation principle uses the cost-of-capital approach as it is suggested (and used) by the regulator and the insurance industry.

Suggested Citation

  • Michael Merz & Mario V. Wüthrich, 2014. "Demand of Insurance under the Cost-of-Capital Premium Calculation Principle," Risks, MDPI, vol. 2(2), pages 1-23, June.
  • Handle: RePEc:gam:jrisks:v:2:y:2014:i:2:p:226-248:d:37193
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/2/2/226/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/2/2/226/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Christian Gollier & Harris Schlesinger, 1996. "Arrow's theorem on the optimality of deductibles: A stochastic dominance approach (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 359-363.
    3. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
    4. Raviv, Artur, 1979. "The Design of an Optimal Insurance Policy," American Economic Review, American Economic Association, vol. 69(1), pages 84-96, March.
    5. Kamien, Morton I. & Schwartz, Nancy L., 1971. "Sufficient conditions in optimal control theory," Journal of Economic Theory, Elsevier, vol. 3(2), pages 207-214, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Jianxi & Hua, Lei, 2017. "A general approach to full-range tail dependence copulas," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 49-64.
    2. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    3. Alexandru V. Asimit & Raluca Vernic & Ricardas Zitikis, 2016. "Background Risk Models and Stepwise Portfolio Construction," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 805-827, September.
    4. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Mercè Claramunt & Maite Mármol & Xavier Varea, 2023. "Facing a Risk: To Insure or Not to Insure—An Analysis with the Constant Relative Risk Aversion Utility Function," Mathematics, MDPI, vol. 11(5), pages 1-13, February.
    2. Xu Zuo Quan & Zhou Xun Yu & Zhuang Sheng Chao, 2015. "Optimal Insurance with Rank-Dependent Utility and Increasing Indemnities," Papers 1509.04839, arXiv.org.
    3. Zuo Quan Xu, 2018. "Pareto optimal moral-hazard-free insurance contracts in behavioral finance framework," Papers 1803.02546, arXiv.org, revised Aug 2021.
    4. Wang, Qiuqi & Wang, Ruodu & Zitikis, Ričardas, 2022. "Risk measures induced by efficient insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 56-65.
    5. Amarante, Massimiliano & Ghossoub, Mario & Phelps, Edmund, 2015. "Ambiguity on the insurer’s side: The demand for insurance," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 61-78.
    6. Chateauneuf, Alain & Cohen, Michele & Meilijson, Isaac, 2004. "Four notions of mean-preserving increase in risk, risk attitudes and applications to the rank-dependent expected utility model," Journal of Mathematical Economics, Elsevier, vol. 40(5), pages 547-571, August.
    7. Karine Darjinoff & Francois Pannequin, 2000. "Demande d'assurance : Faut-il abandonner le critère de l'espérance d'utilité ?," Cahiers de la Maison des Sciences Economiques bla00004, Université Panthéon-Sorbonne (Paris 1).
    8. Lu, Zhiyi & Meng, Shengwang & Liu, Leping & Han, Ziqi, 2018. "Optimal insurance design under background risk with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 15-28.
    9. Michael Breuer, 2005. "Multiple Losses, EX ANTE Moral Hazard, and the Implications for Umbrella Policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(4), pages 525-538, December.
    10. Eric LANGLAIS, 2008. "On Insurance Contract Design For Low Probability Events," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 3(2(4)_Summ).
    11. Cohen Alma, 2006. "The Disadvantages of Aggregate Deductibles," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 6(1), pages 1-28, April.
    12. Carole Bernard & Shaolin Ji & Weidong Tian, 2013. "An optimal insurance design problem under Knightian uncertainty," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 36(2), pages 99-124, November.
    13. Segal, Uzi & Spivak, Avia, 1990. "First order versus second order risk aversion," Journal of Economic Theory, Elsevier, vol. 51(1), pages 111-125, June.
    14. Christopher Gaffney & Adi Ben-Israel, 2016. "A simple insurance model: optimal coverage and deductible," Annals of Operations Research, Springer, vol. 237(1), pages 263-279, February.
    15. Langlais, Eric, 2010. "Safety and the Allocation of Costs in Large Accidents," MPRA Paper 25710, University Library of Munich, Germany.
    16. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.
    17. Alexis Louaas & Pierre Picard, 2022. "Optimal Nuclear Liability Insurance," The Energy Journal, , vol. 43(1), pages 97-115, January.
    18. Ghossoub, Mario, 2019. "Budget-constrained optimal insurance without the nonnegativity constraint on indemnities," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 22-39.
    19. Malamud, Semyon & Rui, Huaxia & Whinston, Andrew, 2016. "Optimal reinsurance with multiple tranches," Journal of Mathematical Economics, Elsevier, vol. 65(C), pages 71-82.
    20. Christian Gollier, 2014. "Optimal insurance design of ambiguous risks," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 57(3), pages 555-576, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:2:y:2014:i:2:p:226-248:d:37193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.