Author
Listed:
- Ilana Vinnik
(Department of Statistics, Miami University, Oxford, OH 45056, USA)
- Tatjana Miljkovic
(Department of Statistics, Miami University, Oxford, OH 45056, USA)
Abstract
When inter-arrival times between events follow an exponential distribution, this implies a Poisson frequency of events, as both models assume events occur independently and at a constant average rate. However, these assumptions are often violated in real-insurance applications. When the rate at which events occur changes over time, the exponential distribution becomes unsuitable. In this paper, we study the distribution of inter-arrival times of severe storms, which exhibit substantial variability, violating the assumption of a constant average rate. A new approach is proposed for modeling severe storm recurrence patterns using a finite mixture of log-normal distributions. This approach effectively captures both frequent, closely spaced storm events and extended quiet periods, addressing the inherent variability in inter-event durations. Parameter estimation is performed using the Expectation–Maximization algorithm, with model selection validated via the Bayesian information criterion (BIC). To complement the parametric approach, Kaplan–Meier survival analysis was employed to provide non-parametric insights into storm-free intervals. Additionally, a simulation-based framework estimates storm recurrence probabilities and assesses financial risks through probable maximum loss (PML) calculations. The proposed methodology is applied to the Billion-Dollar Weather and Climate Disasters dataset, compiled by the U.S. National Oceanic and Atmospheric Administration (NOAA). The results demonstrate the model’s effectiveness in predicting severe storm recurrence intervals, offering valuable tools for managing risk in the property and casualty insurance industry.
Suggested Citation
Ilana Vinnik & Tatjana Miljkovic, 2025.
"Modeling the Inter-Arrival Time Between Severe Storms in the United States Using Finite Mixtures,"
Risks, MDPI, vol. 13(2), pages 1-24, January.
Handle:
RePEc:gam:jrisks:v:13:y:2025:i:2:p:19-:d:1572455
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:13:y:2025:i:2:p:19-:d:1572455. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.