IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v12y2024i8p120-d1447141.html
   My bibliography  Save this article

The Impact of Financial Stress and Uncertainty on Green and Conventional Bonds and Stocks: A Nonlinear and Nonparametric Quantile Analysis

Author

Listed:
  • Muhammad Mar’I

    (Department of Banking and Finance, Near East University, Nicosia 99138, Cyprus)

  • Mehdi Seraj

    (Department of Economics, Near East University, Nicosia 99138, Cyprus)

  • Turgut Tursoy

    (Department of Banking and Finance, Near East University, Nicosia 99138, Cyprus)

Abstract

This study aims to investigate the impact of financial stress and uncertainty on the returns of green and conventional bonds and stocks in the United States from 2010 to 2022. The research utilizes nonlinear and nonparametric analysis, which includes the quantile-on-quantile and nonparametric causality-in-quantiles approaches to examine the relationship between variables. The data analyzed using R programming language show that financial stress positively impacts the middle quantiles of both conventional and green equity, while financial uncertainty negatively impacts upper quantiles. The study also finds that financial stress has a more significant impact on all types of bonds compared to financial uncertainty, with conventional bonds being more affected. This study proposes a pyramid that classifies financial assets based on their susceptibility to financial stress, which could help investors evaluate risk levels and make better investment decisions. The study recommends that policymakers should encourage green investments by offering incentives, such as tax credits. They should also focus on enhancing the efficiency of volatile assets by implementing new investment rules and regulations.

Suggested Citation

  • Muhammad Mar’I & Mehdi Seraj & Turgut Tursoy, 2024. "The Impact of Financial Stress and Uncertainty on Green and Conventional Bonds and Stocks: A Nonlinear and Nonparametric Quantile Analysis," Risks, MDPI, vol. 12(8), pages 1-18, July.
  • Handle: RePEc:gam:jrisks:v:12:y:2024:i:8:p:120-:d:1447141
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/12/8/120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/12/8/120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sim, Nicholas & Zhou, Hongtao, 2015. "Oil prices, US stock return, and the dependence between their quantiles," Journal of Banking & Finance, Elsevier, vol. 55(C), pages 1-8.
    2. Hayet Soltani & Mouna Boujelbène Abbes, 2023. "The Predictive Power of Financial Stress on the Financial Markets Dynamics: Hidden Markov Model," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(1), pages 94-115, March.
    3. Chuliá, Helena & Gupta, Rangan & Uribe, Jorge M. & Wohar, Mark E., 2017. "Impact of US uncertainties on emerging and mature markets: Evidence from a quantile-vector autoregressive approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 178-191.
    4. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021. "Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(4), pages 369-410, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    2. Bouoiyour, Jamal & Selmi, Refk & Wohar, Mark E., 2018. "Measuring the response of gold prices to uncertainty: An analysis beyond the mean," Economic Modelling, Elsevier, vol. 75(C), pages 105-116.
    3. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Tran, Vuong Thao, 2018. "Can economic policy uncertainty predict stock returns? Global evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 134-150.
    4. Selmi, Refk & Mensi, Walid & Hammoudeh, Shawkat & Bouoiyour, Jamal, 2018. "Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold," Energy Economics, Elsevier, vol. 74(C), pages 787-801.
    5. Ruipeng Liu & Rangan Gupta, 2022. "Investors’ Uncertainty and Forecasting Stock Market Volatility," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 23(3), pages 327-337, July.
    6. Rangan Gupta & Hardik A. Marfatia & Christian Pierdzioch & Afees A. Salisu, 2022. "Machine Learning Predictions of Housing Market Synchronization across US States: The Role of Uncertainty," The Journal of Real Estate Finance and Economics, Springer, vol. 64(4), pages 523-545, May.
    7. Rangan Gupta & Christian Pierdzioch & Aviral K. Tiwari, 2024. "Gasoline Prices and Presidential Approval Ratings of the United States," Working Papers 202427, University of Pretoria, Department of Economics.
    8. Wen, Fenghua & Shui, Aojie & Cheng, Yuxiang & Gong, Xu, 2022. "Monetary policy uncertainty and stock returns in G7 and BRICS countries: A quantile-on-quantile approach," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 457-482.
    9. Gupta, Rangan & Ma, Jun & Risse, Marian & Wohar, Mark E., 2018. "Common business cycles and volatilities in US states and MSAs: The role of economic uncertainty," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 317-337.
    10. Rangan Gupta & Chi Keung Marco Lau & Mark E. Wohar, 2019. "The impact of US uncertainty on the Euro area in good and bad times: evidence from a quantile structural vector autoregressive model," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 353-368, May.
    11. Syed Jawad Hussain Shahzad & Rangan Gupta & Riza Demirer & Christian Pierdzioch, 2022. "Oil shocks and directional predictability of macroeconomic uncertainties of developed economies: Evidence from high‐frequency data†," Scottish Journal of Political Economy, Scottish Economic Society, vol. 69(2), pages 169-185, May.
    12. Han, Liyan & Liu, Yang & Yin, Libo, 2019. "Uncertainty and currency performance: A quantile-on-quantile approach," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 702-729.
    13. Nikolay Hristov & Markus Roth, 2019. "Uncertainty Shocks and Financial Crisis Indicators," CESifo Working Paper Series 7839, CESifo.
    14. Salzmann, Leonard, 2020. "The Impact of Uncertainty and Financial Shocks in Recessions and Booms," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224588, Verein für Socialpolitik / German Economic Association.
    15. Juan M. Londono & Mehrdad Samadi, 2023. "The Price of Macroeconomic Uncertainty: Evidence from Daily Options," International Finance Discussion Papers 1376, Board of Governors of the Federal Reserve System (U.S.).
    16. Gloria González‐Rivera & C. Vladimir Rodríguez‐Caballero & Esther Ruiz, 2024. "Expecting the unexpected: Stressed scenarios for economic growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 926-942, August.
    17. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    18. Zhang, Hao & Cai, Guixin & Yang, Dongxiao, 2020. "The impact of oil price shocks on clean energy stocks: Fresh evidence from multi-scale perspective," Energy, Elsevier, vol. 196(C).
    19. Bouri, Elie & Gabauer, David & Gupta, Rangan & Tiwari, Aviral Kumar, 2021. "Volatility connectedness of major cryptocurrencies: The role of investor happiness," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    20. Shin, Minchul & Zhang, Boyuan & Zhong, Molin & Lee, Dong Jin, 2018. "Measuring international uncertainty: The case of Korea," Economics Letters, Elsevier, vol. 162(C), pages 22-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:12:y:2024:i:8:p:120-:d:1447141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.