IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v12y2024i5p83-d1398128.html
   My bibliography  Save this article

Cyber Risk in Insurance: A Quantum Modeling

Author

Listed:
  • Claude Lefèvre

    (Département de Mathématique, Université Libre de Bruxelles, Campus de la Plaine C.P. 210, B-1050 Bruxelles, Belgium)

  • Muhsin Tamturk

    (Research and Development Department, Antares Global, London EC3M 7HB, UK)

  • Sergey Utev

    (Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, UK)

  • Marco Carenzo

    (Research and Development Department, Antares Global, London EC3M 7HB, UK)

Abstract

In this research, we consider cyber risk in insurance using a quantum approach, with a focus on the differences between reported cyber claims and the number of cyber attacks that caused them. Unlike the traditional probabilistic approach, quantum modeling makes it possible to deal with non-commutative event paths. We investigate the classification of cyber claims according to different cyber risk behaviors to enable more precise analysis and management of cyber risks. Additionally, we examine how historical cyber claims can be utilized through the application of copula functions for dependent insurance claims. We also discuss classification, likelihood estimation, and risk-loss calculation within the context of dependent insurance claim data.

Suggested Citation

  • Claude Lefèvre & Muhsin Tamturk & Sergey Utev & Marco Carenzo, 2024. "Cyber Risk in Insurance: A Quantum Modeling," Risks, MDPI, vol. 12(5), pages 1-16, May.
  • Handle: RePEc:gam:jrisks:v:12:y:2024:i:5:p:83-:d:1398128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/12/5/83/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/12/5/83/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Constantinescu, Corina & Hashorva, Enkelejd & Ji, Lanpeng, 2011. "Archimedean copulas in finite and infinite dimensions—with application to ruin problems," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 487-495.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    2. Hashorva, Enkelejd & Kortschak, Dominik, 2014. "Tail asymptotics of random sum and maximum of log-normal risks," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 167-174.
    3. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Copulas and related properties," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 109-121.
    4. Youri Raaijmakers & Hansjörg Albrecher & Onno Boxma, 2019. "The Single Server Queue with Mixing Dependencies," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1023-1044, December.
    5. Castañer, A. & Claramunt, M.M. & Lefèvre, C. & Loisel, S., 2015. "Discrete Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 343-362.
    6. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
    7. Queensley C Chukwudum, 2018. "Extreme Value Theory and Copulas: Reinsurance in the Presence of Dependent Risks," Working Papers hal-01855971, HAL.
    8. Constantinescu Corina D. & Kozubowski Tomasz J. & Qian Haoyu H., 2019. "Probability of ruin in discrete insurance risk model with dependent Pareto claims," Dependence Modeling, De Gruyter, vol. 7(1), pages 215-233, January.
    9. Marri, Fouad & Furman, Edward, 2012. "Pricing compound Poisson processes with the Farlie–Gumbel–Morgenstern dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 151-157.
    10. Claude Lefèvre & Stéphane Loisel & Pierre Montesinos, 2020. "Bounding basis risk using s-convex orders on Beta-unimodal distributions," Working Papers hal-02611208, HAL.
    11. Enkelejd Hashorva & Lanpeng Ji, 2014. "Random Shifting and Scaling of Insurance Risks," Risks, MDPI, vol. 2(3), pages 1-12, July.
    12. Fred Espen Benth & Giulia Di Nunno & Dennis Schroers, 2022. "Copula measures and Sklar's theorem in arbitrary dimensions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1144-1183, September.
    13. Franc{c}ois Dufresne & Enkelejd Hashorva & Gildas Ratovomirija & Youssouf Toukourou, 2016. "On bivariate lifetime modelling in life insurance applications," Papers 1601.04351, arXiv.org.
    14. Castañer, Anna & Claramunt, M. Mercè & Lefèvre, Claude & Loisel, Stéphane, 2019. "Partially Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 172(C), pages 47-58.
    15. Manel Kacem & Stéphane Loisel & Véronique Maume-Deschamps, 2016. "Some mixing properties of conditionally independent processes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(5), pages 1241-1259, March.
    16. Arendarczyk, Marek & Kozubowski, Tomasz. J. & Panorska, Anna K., 2018. "The joint distribution of the sum and maximum of dependent Pareto risks," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 136-156.
    17. Castañer, A. & Claramunt, M.M. & Lefèvre, C. & Loisel, S., 2015. "Discrete Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 343-362.
    18. Claude Lefèvre & Matthieu Simon, 2021. "Schur-Constant and Related Dependence Models, with Application to Ruin Probabilities," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 317-339, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:12:y:2024:i:5:p:83-:d:1398128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.