IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v11y2023i2p29-d1049181.html
   My bibliography  Save this article

Analysing Quantiles in Models of Forward Term Rates

Author

Listed:
  • Thomas A. McWalter

    (The African Institute of Financial Markets and Risk Management (AIFMRM), University of Cape Town, Cape Town 7701, South Africa
    Faculty of Science, Department of Statistics, University of Johannesburg, Johannesburg 2006, South Africa)

  • Erik Schlögl

    (The African Institute of Financial Markets and Risk Management (AIFMRM), University of Cape Town, Cape Town 7701, South Africa
    Faculty of Science, Department of Statistics, University of Johannesburg, Johannesburg 2006, South Africa
    School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Jacques van Appel

    (Faculty of Science, Department of Statistics, University of Johannesburg, Johannesburg 2006, South Africa)

Abstract

The class of forward-LIBOR market models can, under certain volatility structures, produce unrealistically high long-dated forward rates, particularly for maturities and tenors beyond the liquid market calibration instruments. This paper presents a diagnostic tool for analysing the quantiles of distributions for forward term rates in a displaced lognormal forward-LIBOR model (DLFM). In particular, we provide a quantile approximation that can be used to assess whether the modelled term rates remain within realistic bounds with a high probability. Applying this diagnostic tool (verified using Quasi-Monte Carlo (QMC) simulations), we show that realised forward term rates for long time horizons may be kept within realistic limits by appropriately damping the tail of the DLFM volatility function.

Suggested Citation

  • Thomas A. McWalter & Erik Schlögl & Jacques van Appel, 2023. "Analysing Quantiles in Models of Forward Term Rates," Risks, MDPI, vol. 11(2), pages 1-18, January.
  • Handle: RePEc:gam:jrisks:v:11:y:2023:i:2:p:29-:d:1049181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/11/2/29/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/11/2/29/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Simona Svoboda-Greenwood, 2009. "Displaced Diffusion as an Approximation of the Constant Elasticity of Variance," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 269-286.
    4. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    5. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    6. John Schoenmakers & Brian Coffey, 2003. "Systematic Generation of Parametric Correlation Structures for the LIBOR Market Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(05), pages 507-519.
    7. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    8. Dorje C. Brody & Lane P. Hughston, 2018. "Social Discounting And The Long Rate Of Interest," Mathematical Finance, Wiley Blackwell, vol. 28(1), pages 306-334, January.
    9. Balter, Anne G. & Pelsser, Antoon & Schotman, Peter C., 2021. "What does a term structure model imply about very long-term interest rates?," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 202-219.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    2. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    3. Zhanyu Chen & Kai Zhang & Hongbiao Zhao, 2022. "A Skellam market model for loan prime rate options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 525-551, March.
    4. Robert J. Elliott & Tak Kuen Siu, 2016. "Pricing regime-switching risk in an HJM interest rate environment," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1791-1800, December.
    5. Ingo Beyna, 2013. "Interest Rate Derivatives," Lecture Notes in Economics and Mathematical Systems, Springer, edition 127, number 978-3-642-34925-6, October.
    6. Yongwoong Lee & Kisung Yang, 2020. "Finite Difference Method for the Hull–White Partial Differential Equations," Mathematics, MDPI, vol. 8(10), pages 1-11, October.
    7. I‐Doun Kuo & Kai‐Li Wang, 2009. "Implied deterministic volatility functions: An empirical test for Euribor options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(4), pages 319-347, April.
    8. Lixin Wu, 2013. "Inflation-rate Derivatives: From Market Model to Foreign Currency Analogy," Papers 1302.0574, arXiv.org.
    9. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 79-120, May.
    10. Joanne Kennedy & Phil Hunt & Antoon Pelsser, 2000. "Markov-functional interest rate models," Finance and Stochastics, Springer, vol. 4(4), pages 391-408.
    11. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    12. Steven Kou, 2000. "A Jump Diffusion Model for Option Pricing with Three Properties: Leptokurtic Feature, Volatility Smile, and Analytical Tractability," Econometric Society World Congress 2000 Contributed Papers 0062, Econometric Society.
    13. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    14. Reik Borger & Jan van Heys, 2010. "Calibration of the Libor Market Model Using Correlations Implied by CMS Spread Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(5), pages 453-469.
    15. Paul Glasserman & S. G. Kou, 2003. "The Term Structure of Simple Forward Rates with Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 383-410, July.
    16. Samson Assefa, 2007. "Pricing Swaptions and Credit Default Swaptions in the Quadratic Gaussian Factor Model," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2007, January-A.
    17. Glasserman, P. & Zhao, X., 1998. "Arbitrage-Free Discretization of Lognormal Forward Libor and Swap Rate Models," Papers 98-09, Columbia - Graduate School of Business.
    18. Linlin Xu & Giray Ökten, 2015. "High-performance financial simulation using randomized quasi-Monte Carlo methods," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1425-1436, August.
    19. R.C. Stapleton & Marti G. Subrahmanyam, 1999. "The Term Structure of Interest Rate-Futures Prices," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-045, New York University, Leonard N. Stern School of Business-.
    20. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:11:y:2023:i:2:p:29-:d:1049181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.