IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i11p202-d951495.html
   My bibliography  Save this article

Bivariate Copulas Based on Counter-Monotonic Shock Method

Author

Listed:
  • Farid El Ktaibi

    (Department of Mathematics and Statistics, Zayed University, Abu Dhabi 144534, United Arab Emirates
    These authors contributed equally to this work.)

  • Rachid Bentoumi

    (Department of Mathematics and Statistics, Zayed University, Abu Dhabi 144534, United Arab Emirates
    These authors contributed equally to this work.)

  • Nicola Sottocornola

    (Department of Mathematics and Statistics, Zayed University, Abu Dhabi 144534, United Arab Emirates
    These authors contributed equally to this work.)

  • Mhamed Mesfioui

    (Département de Mathématiques et d’Informatiques, Université du Québec à Trois-Rivières, Trois- Rivières, QC G8Z 4M3, Canada
    These authors contributed equally to this work.)

Abstract

This paper explores the properties of a family of bivariate copulas based on a new approach using the counter-monotonic shock method. The resulting copula covers the full range of negative dependence induced by one parameter. Expressions for the copula and density are derived and many theoretical properties are examined thoroughly, including explicit expressions for prominent measures of dependence, namely Spearman’s rho, Kendall’s tau and Blomqvist’s beta. The convexity properties of this copula are presented, together with explicit expressions of the mixed moments. Estimation of the dependence parameter using the method of moments is considered, then a simulation study is carried out to evaluate the performance of the suggested estimator. Finally, an application of the proposed copula is illustrated by means of a real data set on air quality in New York City.

Suggested Citation

  • Farid El Ktaibi & Rachid Bentoumi & Nicola Sottocornola & Mhamed Mesfioui, 2022. "Bivariate Copulas Based on Counter-Monotonic Shock Method," Risks, MDPI, vol. 10(11), pages 1-20, October.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:11:p:202-:d:951495
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/11/202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/11/202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liebscher, Eckhard, 2008. "Construction of asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2234-2250, November.
    2. Genest, Christian & Mesfioui, Mhamed & Schulz, Juliana, 2018. "A new bivariate Poisson common shock model covering all possible degrees of dependence," Statistics & Probability Letters, Elsevier, vol. 140(C), pages 202-209.
    3. Fabrizio Durante, 2009. "Construction of non-exchangeable bivariate distribution functions," Statistical Papers, Springer, vol. 50(2), pages 383-391, March.
    4. Ruiz-Rivas, Carmen & Cuadras, Carles M., 1988. "Inference properties of a one-parameter curved exponential family of distributions with given marginals," Journal of Multivariate Analysis, Elsevier, vol. 27(2), pages 447-456, November.
    5. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    2. Arbel, Julyan & Crispino, Marta & Girard, Stéphane, 2019. "Dependence properties and Bayesian inference for asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    3. Durante, Fabrizio & Okhrin, Ostap, 2014. "Estimation procedures for exchangeable Marshall copulas with hydrological application," SFB 649 Discussion Papers 2014-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. repec:hum:wpaper:sfb649dp2014-014 is not listed on IDEAS
    5. Penikas, H., 2010. "Financial Applications of Copula-Models," Journal of the New Economic Association, New Economic Association, issue 7, pages 24-44.
    6. Fabrizio Durante & Erich Klement & Carlo Sempi & Manuel Úbeda-Flores, 2010. "Measures of non-exchangeability for bivariate random vectors," Statistical Papers, Springer, vol. 51(3), pages 687-699, September.
    7. Wu, Shaomin, 2014. "Construction of asymmetric copulas and its application in two-dimensional reliability modelling," European Journal of Operational Research, Elsevier, vol. 238(2), pages 476-485.
    8. Thibaut Lux & Antonis Papapantoleon, 2016. "Model-free bounds on Value-at-Risk using extreme value information and statistical distances," Papers 1610.09734, arXiv.org, revised Nov 2018.
    9. Chia-Hsun Hsieh & Shian-Chang Huang, 2012. "Time-Varying Dependency and Structural Changes in Currency Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(2), pages 94-127, March.
    10. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    11. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.
    12. Alexander, Carol & Sheedy, Elizabeth, 2008. "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2220-2236, October.
    13. Christian Hering & Jan-Frederik Mai, 2012. "Moment-based estimation of extendible Marshall-Olkin copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 601-620, July.
    14. Barbedo, Claudio H.S. & de Melo, Eduardo F.L., 2012. "Joint dynamics of Brazilian interest rate yields and macro variables under a no-arbitrage restriction," Journal of Economics and Business, Elsevier, vol. 64(5), pages 364-376.
    15. Azam Dehgani & Ali Dolati & Manuel Úbeda-Flores, 2013. "Measures of radial asymmetry for bivariate random vectors," Statistical Papers, Springer, vol. 54(2), pages 271-286, May.
    16. Roger J. Jiao & Feng Zhou & Chih-Hsing Chu, 2017. "Decision theoretic modeling of affective and cognitive needs for product experience engineering: key issues and a conceptual framework," Journal of Intelligent Manufacturing, Springer, vol. 28(7), pages 1755-1767, October.
    17. Eling, Martin, 2014. "Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 45-56.
    18. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    19. Penikas, Henry & Simakova, Varvara, 2009. "Interest Rate Risk Management Based on Copula-GARCH Models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 13(1), pages 3-36.
    20. Song, Yupeng & Basu, Biswajit & Zhang, Zili & Sørensen, John Dalsgaard & Li, Jie & Chen, Jianbing, 2021. "Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method," Renewable Energy, Elsevier, vol. 168(C), pages 991-1014.
    21. González-Sánchez, Mariano & Nave Pineda, Juan M., 2023. "Where is the distribution tail threshold? A tale on tail and copulas in financial risk measurement," International Review of Financial Analysis, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:11:p:202-:d:951495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.