IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v9y2020i10p117-d421335.html
   My bibliography  Save this article

Analysis of Current Status and Regulatory Promotion for Incineration Bottom Ash Recycling in Taiwan

Author

Listed:
  • Chi-Hung Tsai

    (Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan)

  • Yun-Hwei Shen

    (Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan)

  • Wen-Tien Tsai

    (Graduate Institute of Bioresources, National Pingtung University of Science and Technology, Pingtung 912, Taiwan)

Abstract

Incineration is the most important technology for treating municipal solid waste (MSW) and industrial waste in Taiwan. Currently, there are 24 large-scale MSW incineration plants operated to generate about 1.2 million metric tons of residual ash (mostly bottom ash) based on approximately 6.5 million metric tons of waste incinerated yearly. To reduce the depletion of non-renewable resources under the circular economy principle, the recycling of MSW incineration bottom ash (IBA) as recycled aggregate in concrete and construction applications has been progressed in recent years around the world. According to the official database, the trend analysis of MSW generation and treatment, electricity power and IBA generation from the MSW incineration plants over the past decade (2010–2019) was performed in this work. It showed an increased power generation, growing from 0.485 kWh/kg in 2010 to 0.530 kWh/kg in 2019. In 2019, 2738 GWh of power was sold to Taipower (one of the state-owned companies in Taiwan) for electricity grid connection, gaining income of about NT$ 5,089,383,000 (≈US$ 172,520,000) at an average rate of 1.86 NT$/kWh (0.063 US$/kWh). On the other hand, the ratios of incineration bottom ash (IBA) generation to refuse incinerated indicated a decreasing trend due to the increased operation efficiencies of MSW incineration plants. Based on the revised regulations implemented on 18 May 2020, the regulatory measures for promoting IBA recycling in Taiwan were promulgated to valorize it for the production of recycled aggregate under rigorous requirements for prevent it from polluting the environment.

Suggested Citation

  • Chi-Hung Tsai & Yun-Hwei Shen & Wen-Tien Tsai, 2020. "Analysis of Current Status and Regulatory Promotion for Incineration Bottom Ash Recycling in Taiwan," Resources, MDPI, vol. 9(10), pages 1-10, September.
  • Handle: RePEc:gam:jresou:v:9:y:2020:i:10:p:117-:d:421335
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/9/10/117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/9/10/117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wen-Tien Tsai, 2019. "Promoting the Circular Economy via Waste-to-Power (WTP) in Taiwan," Resources, MDPI, vol. 8(2), pages 1-9, May.
    2. Antoine Beylot & Antoine Hochar & Pascale Michel & Marie Descat & Yannick Ménard & Jacques Villeneuve, 2018. "Municipal Solid Waste Incineration in France: An Overview of Air Pollution Control Techniques, Emissions, and Energy Efficiency," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1016-1026, October.
    3. Iveta Vateva & David Laner, 2020. "Grain-Size Specific Characterisation and Resource Potentials of Municipal Solid Waste Incineration (MSWI) Bottom Ash: A German Case Study," Resources, MDPI, vol. 9(6), pages 1-25, May.
    4. Tsai, W.T. & Chou, Y.H., 2006. "An overview of renewable energy utilization from municipal solid waste (MSW) incineration in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 491-502, October.
    5. Tsai, Wen-Tien & Kuo, Kuan-Chi, 2010. "An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan," Energy, Elsevier, vol. 35(12), pages 4824-4830.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zygmunt Kowalski & Joanna Kulczycka & Agnieszka Makara & Roland Verhé & Guy De Clercq, 2022. "Assessment of Energy Recovery from Municipal Waste Management Systems Using Circular Economy Quality Indicators," Energies, MDPI, vol. 15(22), pages 1-22, November.
    2. Yumeng Zhao & Kai Ren & Wenfang Huang, 2023. "Which Is More Environmentally Friendly? A Comparative Analysis of the Environmental Benefits of Two Waste-to-Energy Technologies for Plastics Based on an LCA Model," Sustainability, MDPI, vol. 15(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solhee Kim & Rylie E. O. Pelton & Timothy M. Smith & Jimin Lee & Jeongbae Jeon & Kyo Suh, 2019. "Environmental Implications of the National Power Roadmap with Policy Directives for Battery Electric Vehicles (BEVs)," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    2. Xin-gang, Zhao & Gui-wu, Jiang & Ang, Li & Yun, Li, 2016. "Technology, cost, a performance of waste-to-energy incineration industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 115-130.
    3. Konstantinos Petridis & Prasanta Kumar Dey, 2018. "Measuring incineration plants’ performance using combined data envelopment analysis, goal programming and mixed integer linear programming," Annals of Operations Research, Springer, vol. 267(1), pages 467-491, August.
    4. Pirotta, F.J.C. & Ferreira, E.C. & Bernardo, C.A., 2013. "Energy recovery and impact on land use of Maltese municipal solid waste incineration," Energy, Elsevier, vol. 49(C), pages 1-11.
    5. Wen-Tien Tsai, 2020. "Turning Food Waste into Value-Added Resources: Current Status and Regulatory Promotion in Taiwan," Resources, MDPI, vol. 9(5), pages 1-11, April.
    6. Botakoz Suleimenova & Berik Aimbetov & Daulet Zhakupov & Dhawal Shah & Yerbol Sarbassov, 2022. "Co-Firing of Refuse-Derived Fuel with Ekibastuz Coal in a Bubbling Fluidized Bed Reactor: Analysis of Emissions and Ash Characteristics," Energies, MDPI, vol. 15(16), pages 1-11, August.
    7. Arbulú, Italo & Lozano, Javier & Rey-Maquieira, Javier, 2017. "The challenges of tourism to waste-to-energy public-private partnerships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 916-921.
    8. Roy, S. & Lam, Y.F. & Hossain, M.U. & Chan, J.C.L., 2022. "Comprehensive evaluation of electricity generation and emission reduction potential in the power sector using renewable alternatives in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Alao, M.A., 2017. "Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 149-162.
    10. Tsai, Wen-Tien, 2011. "An analysis of used lubricant recycling, energy utilization and its environmental benefit in Taiwan," Energy, Elsevier, vol. 36(7), pages 4333-4339.
    11. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Online fault detection and the economic analysis of grid-connected photovoltaic systems," Energy, Elsevier, vol. 134(C), pages 121-135.
    12. Yaliwal, V.S. & Banapurmath, N.R. & Hosmath, R.S. & Khandal, S.V. & Budzianowski, Wojciech M., 2016. "Utilization of hydrogen in low calorific value producer gas derived from municipal solid waste and biodiesel for diesel engine power generation application," Renewable Energy, Elsevier, vol. 99(C), pages 1253-1261.
    13. Ying Li & Ruyan Zhao & Haonan Li & Wenting Song & Haoxiang Chen, 2023. "Feasibility Analysis of Municipal Solid Waste Incineration for Harmless Treatment of Potentially Virulent Waste," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    14. Tsai, Wen-Tien, 2014. "Feed-in tariff promotion and innovative measures for renewable electricity: Taiwan case analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1126-1132.
    15. Taylor, Josh A. & Dhople, Sairaj V. & Callaway, Duncan S., 2016. "Power systems without fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1322-1336.
    16. Tsai, Wen-Tien & Lan, Haw-Farn & Lin, De-Tsai, 2008. "An analysis of bioethanol utilized as renewable energy in the transportation sector in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1364-1382, June.
    17. Haiqian Ke & Shangze Dai & Haichao Yu, 2022. "Effect of green innovation efficiency on ecological footprint in 283 Chinese Cities from 2008 to 2018," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2841-2860, February.
    18. Trine Henriksen & Thomas F. Astrup & Anders Damgaard, 2021. "Data representativeness in LCA: A framework for the systematic assessment of data quality relative to technology characteristics," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 51-66, February.
    19. Di Maria, Francesco & Sisani, Federico & Contini, Stefano, 2018. "Are EU waste-to-energy technologies effective for exploiting the energy in bio-waste?," Applied Energy, Elsevier, vol. 230(C), pages 1557-1572.
    20. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:9:y:2020:i:10:p:117-:d:421335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.