IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v8y2019i1p8-d194224.html
   My bibliography  Save this article

Benefit Analysis and Regulatory Actions for Imported Palm Kernel Shell as an Environment-Friendly Energy Source in Taiwan

Author

Listed:
  • Wen-Tien Tsai

    (Graduate Institute of Bioresources, National Pingtung University of Science and Technology, 912 Pingtung, Taiwan)

Abstract

In response to the lack of locally natural sources and the environmental concerns about greenhouse gas (GHG) emissions, using a wide variety of biomass residues as energy sources has attracted much attention in the past two decades. The purpose of the case study was to examine the energy use of imported palm kernel shell (PKS) in Taiwan, which has generated superheated steam for the end users in the industrial sector. In this work, characterizing the thermochemical properties of imported PKS (including proximate analysis, elemental analysis and calorific value) was first conducted by the standard test methods. Based on the statistics of imported PKS and the method developed by the Intergovernmental Panel on Climate Change (IPCC), the preliminary benefit analysis of PKS-to-energy was further addressed in the paper to verify its equivalent GHG emission mitigation. The results showed the annual benefit of equivalent GHG mitigation of about 78,647 metric tons (using annual imported PKS of 60,000 metric tons on an average). In addition, the economic benefit for purchasing PKS in the industrial boilers can gain the cost-down at approximately NT$60,000,000 (US$2,000,000) in comparison with that of fuel oil. Furthermore, the regulatory measures for upgrading PKS-to-energy and countermeasures for controlling air pollutant emissions from PKS-to-energy facilities were briefly summarized to create another circular economy. Finally, some technological recommendations have been addressed to upgrade the added values of imported PKS in Taiwan.

Suggested Citation

  • Wen-Tien Tsai, 2019. "Benefit Analysis and Regulatory Actions for Imported Palm Kernel Shell as an Environment-Friendly Energy Source in Taiwan," Resources, MDPI, vol. 8(1), pages 1-10, January.
  • Handle: RePEc:gam:jresou:v:8:y:2019:i:1:p:8-:d:194224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/8/1/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/8/1/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2015. "Carbon dioxide emission standards for U.S. power plants: An efficiency analysis perspective," Energy Economics, Elsevier, vol. 50(C), pages 140-153.
    2. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2015. "Carbon dioxode emission standards for U.S. power plants: An efficiency analysis perspective," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 77009, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Tsai, Wen-Tien & Hsien, Kuo-Jung, 2007. "An analysis of cogeneration system utilized as sustainable energy in the industrial sector in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2104-2120, December.
    4. Shuit, S.H. & Tan, K.T. & Lee, K.T. & Kamaruddin, A.H., 2009. "Oil palm biomass as a sustainable energy source: A Malaysian case study," Energy, Elsevier, vol. 34(9), pages 1225-1235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Ru Lee & Wen-Tien Tsai, 2022. "Overview of Biomass-to-Energy Supply and Promotion Policy in Taiwan," Energies, MDPI, vol. 15(18), pages 1-11, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    2. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    3. Qingyou Yan & Fei Zhao & Xu Wang & Tomas Balezentis, 2021. "The Environmental Efficiency Analysis Based on the Three-Step Method for Two-Stage Data Envelopment Analysis," Energies, MDPI, vol. 14(21), pages 1-14, October.
    4. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    5. Fritz Schiltz & Kristof Witte & Deni Mazrekaj, 2020. "Managerial efficiency and efficiency differentials in adult education: a conditional and bias-corrected efficiency analysis," Annals of Operations Research, Springer, vol. 288(2), pages 529-546, May.
    6. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    7. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
    8. Juan Aparicio & Magdalena Kapelko & Lidia Ortiz, 2021. "Modelling environmental inefficiency under a quota system," Operational Research, Springer, vol. 21(2), pages 1097-1124, June.
    9. Wu, F. & Wang, S.Y. & Zhou, P., 2023. "Marginal abatement cost of carbon dioxide emissions: The role of abatement options," European Journal of Operational Research, Elsevier, vol. 310(2), pages 891-901.
    10. Cui, Qiang & Lin, Jing-ling & Jin, Zi-yin, 2020. "Evaluating airline efficiency under “Carbon Neutral Growth from 2020” strategy through a Network Interval Slack-Based Measure," Energy, Elsevier, vol. 193(C).
    11. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    12. Juan Aparicio & Magdalena Kapelko, 2019. "Enhancing the Measurement of Composite Indicators of Corporate Social Performance," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 807-826, July.
    13. Hampf, Benjamin, 2017. "Rational inefficiency, adjustment costs and sequential technologies," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1095-1108.
    14. Ke Wang & Yi-Ming Wei & Zhimin Huang, 2017. "Environmental efficiency and abatement efficiency measurements of China¡¯s thermal power industry: A data envelopment analysis based materials balance approach," CEEP-BIT Working Papers 108, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    15. Yu, Xianyu & Hu, Yuezhi & Zhou, Dequn & Wang, Qunwei & Sang, Xiuzhi & Huang, Kai, 2023. "Carbon emission reduction analysis for cloud computing industry: Can carbon emissions trading and technology innovation help?," Energy Economics, Elsevier, vol. 125(C).
    16. Ying Li & Yung-ho Chiu & Tai-Yu Lin, 2019. "Research on New and Traditional Energy Sources in OECD Countries," IJERPH, MDPI, vol. 16(7), pages 1-21, March.
    17. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    18. Andreas Eder, 2022. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Journal of Productivity Analysis, Springer, vol. 57(2), pages 157-176, April.
    19. Andreas Eder, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Working Papers 752021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    20. Chenxu Liu & Ruien Tang & Yaqi Guo & Yuhan Sun & Xinyi Liu, 2022. "Research on the Structure of Carbon Emission Efficiency and Influencing Factors in the Yangtze River Delta Urban Agglomeration," Sustainability, MDPI, vol. 14(10), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:8:y:2019:i:1:p:8-:d:194224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.