IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v7y2018i4p65-d175922.html
   My bibliography  Save this article

The Ecological Footprint Accounting of Products: When Larger Is Not Worse

Author

Listed:
  • Nicoletta Patrizi

    (Ecodynamics Group, Dept. of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy)

  • Valentina Niccolucci

    (Ecodynamics Group, Dept. of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy)

  • Riccardo M. Pulselli

    (Ecodynamics Group, Dept. of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy)

  • Elena Neri

    (Ecodynamics Group, Dept. of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy)

  • Simone Bastianoni

    (Ecodynamics Group, Dept. of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy)

Abstract

One of the main goals of any (sustainability) indicator should be the communication of a clear, unambiguous, and simplified message about the status of the analyzed system. The selected indicator is expected to declare explicitly how its numerical value depicts a situation, for example, positive or negative, sustainable or unsustainable, especially when a comparison among similar or competitive systems is performed. This aspect should be a primary and discriminating issue when the selection of a set of opportune indicators is operated. The Ecological Footprint (EF) has become one of the most popular and widely used sustainability indicators. It is a resource accounting method with an area based metric in which the units of measure are global hectares or hectares with world average bio-productivity. Its main goal is to underline the link between the (un)sustainability level of a product, a system, an activity or a population life style, with the land demand for providing goods, energy, and ecological services needed to sustain that product, system, activity, or population. Therefore, the traditional rationale behind the message of EF is: the larger EF value, the larger environmental impact in terms of resources use, the lower position in the sustainability rank. The aim of this paper was to investigate if this rationale is everywhere opportune and unambiguous, or if sometimes its use requires paying a special attention. Then, a three-dimensional modification of the classical EF framework for the sustainability evaluation of a product has been proposed following a previous work by Niccolucci and co-authors (2009). Finally, the potentialities of the model have been tested by using a case study from the agricultural context.

Suggested Citation

  • Nicoletta Patrizi & Valentina Niccolucci & Riccardo M. Pulselli & Elena Neri & Simone Bastianoni, 2018. "The Ecological Footprint Accounting of Products: When Larger Is Not Worse," Resources, MDPI, vol. 7(4), pages 1-13, October.
  • Handle: RePEc:gam:jresou:v:7:y:2018:i:4:p:65-:d:175922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/7/4/65/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/7/4/65/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mamouni Limnios, Elena Alexandra & Ghadouani, Anas & Schilizzi, Steven G.M. & Mazzarol, Tim, 2009. "Giving the consumer the choice: A methodology for Product Ecological Footprint calculation," Ecological Economics, Elsevier, vol. 68(10), pages 2525-2534, August.
    2. Müller, Felix & Burkhard, Benjamin, 2012. "The indicator side of ecosystem services," Ecosystem Services, Elsevier, vol. 1(1), pages 26-30.
    3. Niccolucci, V. & Bastianoni, S. & Tiezzi, E.B.P. & Wackernagel, M. & Marchettini, N., 2009. "How deep is the footprint? A 3D representation," Ecological Modelling, Elsevier, vol. 220(20), pages 2819-2823.
    4. Huijbregts, Mark A.J. & Hellweg, Stefanie & Frischknecht, Rolf & Hungerbuhler, Konrad & Hendriks, A. Jan, 2008. "Ecological footprint accounting in the life cycle assessment of products," Ecological Economics, Elsevier, vol. 64(4), pages 798-807, February.
    5. Baabou, Wafaa & Grunewald, Nicole & Ouellet-Plamondon, Claudiane & Gressot, Michel & Galli, Alessandro, 2017. "The Ecological Footprint of Mediterranean cities: Awareness creation and policy implications," Environmental Science & Policy, Elsevier, vol. 69(C), pages 94-104.
    6. Andrea Collins & Andrew Flynn & Thomas Wiedmann & John Barrett, 2006. "The Environmental Impacts of Consumption at a Subnational Level," Journal of Industrial Ecology, Yale University, vol. 10(3), pages 9-24, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haiqian Ke & Wenyi Yang & Xiaoyang Liu & Fei Fan, 2020. "Does Innovation Efficiency Suppress the Ecological Footprint? Empirical Evidence from 280 Chinese Cities," IJERPH, MDPI, vol. 17(18), pages 1-23, September.
    2. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    3. Syrovátka, Miroslav, 2020. "On sustainability interpretations of the Ecological Footprint," Ecological Economics, Elsevier, vol. 169(C).
    4. Zhigang Li & Jie Yang & Jialong Zhong & Dong Zhang, 2022. "Assessment of Urban Agglomeration Ecological Sustainability and Identification of Influencing Factors: Based on the 3DEF Model and the Random Forest," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    5. Blasi, E. & Passeri, N. & Franco, S. & Galli, A., 2016. "An ecological footprint approach to environmental–economic evaluation of farm results," Agricultural Systems, Elsevier, vol. 145(C), pages 76-82.
    6. Yung-Jaan Lee, 2022. "Hybrid Ecological Footprint of Taipei," Sustainability, MDPI, vol. 14(7), pages 1-16, April.
    7. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    8. Gerner, Nadine V. & Nafo, Issa & Winking, Caroline & Wencki, Kristina & Strehl, Clemens & Wortberg, Timo & Niemann, André & Anzaldua, Gerardo & Lago, Manuel & Birk, Sebastian, 2018. "Large-scale river restoration pays off: A case study of ecosystem service valuation for the Emscher restoration generation project," Ecosystem Services, Elsevier, vol. 30(PB), pages 327-338.
    9. Silvio Franco & Barbara Pancino & Angelo Martella, 2021. "Mapping National Environmental Sustainability Distribution by Ecological Footprint: The Case of Italy," Sustainability, MDPI, vol. 13(15), pages 1-14, August.
    10. Elena Cervelli & Ester Scotto di Perta & Stefania Pindozzi, 2020. "Identification of Marginal Landscapes as Support for Sustainable Development: GIS-Based Analysis and Landscape Metrics Assessment in Southern Italy Areas," Sustainability, MDPI, vol. 12(13), pages 1-25, July.
    11. Braat, Leon C. & de Groot, Rudolf, 2012. "The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy," Ecosystem Services, Elsevier, vol. 1(1), pages 4-15.
    12. John A. Paravantis & Panagiotis D. Tasios & Vasileios Dourmas & Georgios Andreakos & Konstantinos Velaoras & Nikoletta Kontoulis & Panagiota Mihalakakou, 2021. "A Regression Analysis of the Carbon Footprint of Megacities," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    13. Hua Liu & Dan-Yang Li & Rong Ma & Ming Ma, 2022. "Assessing the Ecological Risks Based on the Three-Dimensional Ecological Footprint Model in Gansu Province," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    14. Debrupa Chakraborty & Joyashree Roy, 2015. "Ecological footprint of paperboard and paper production unit in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 909-921, August.
    15. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    16. Vargas-Hernández José G. & Rakowska Joanna & Vargas-González Omar C., 2022. "Green Economic Development as the Framework for Green Finance and Green Investment," Economic and Regional Studies / Studia Ekonomiczne i Regionalne, Sciendo, vol. 15(3), pages 304-322, September.
    17. Yılmaz, Merve & Terzi, Fatih, 2021. "Measuring the patterns of urban spatial growth of coastal cities in developing countries by geospatial metrics," Land Use Policy, Elsevier, vol. 107(C).
    18. Nathalie Gröfke & Valérie Duplat & Christopher Wickert & Brian Tjemkes, 2021. "A Multi-Stakeholder Perspective on Food Labelling for Environmental Sustainability: Attitudes, Perceived Barriers, and Solution Approaches towards the “Traffic Light Index”," Sustainability, MDPI, vol. 13(2), pages 1-23, January.
    19. Jacobs, Sander & Burkhard, Benjamin & Van Daele, Toon & Staes, Jan & Schneiders, Anik, 2015. "‘The Matrix Reloaded’: A review of expert knowledge use for mapping ecosystem services," Ecological Modelling, Elsevier, vol. 295(C), pages 21-30.
    20. Yosuke Shigetomi & Keisuke Nansai & Shigemi Kagawa & Susumu Tohno, 2016. "Influence of income difference on carbon and material footprints for critical metals: the case of Japanese households," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:7:y:2018:i:4:p:65-:d:175922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.