IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v7y2018i4p64-d174380.html
   My bibliography  Save this article

Environment and Big Data: Role in Smart Cities of India

Author

Listed:
  • Rajneesh Dwevedi

    (Department of Environmental Science, Lady Irwin College, University of Delhi, New Delhi 110001, India)

  • Vinoy Krishna

    (Department of Biology, Lady Irwin College, University of Delhi, New Delhi 110001, India)

  • Aniket Kumar

    (Department of Environmental Science, Dyal Singh College, University of Delhi, New Delhi 110003, India)

Abstract

The intention of India’s Smart City Mission program is to achieve better living conditions in a sustainable environment with smart solutions. This program identifies the key challenges of urbanization and the environment. The mitigation of these challenges depends on the monitoring and assessment of multiple factors, including demography, education, health, and the environment; however, the inclusion of environmental factors are limited. The monitoring and assessment of environmental factors will continuously generate big data and hence would require scientific and technological innovation for a sustainable management plan. This study identifies six environmental factors, which should be integrated in the development of smart cities. These environmental factors include indicators of landscape and geography, climate, atmospheric pollution, water resources, energy resources, and urban green space as a major component of the environment. This paper also discusses the importance of these environmental components and the maintenance of big data in the management of smart cities.

Suggested Citation

  • Rajneesh Dwevedi & Vinoy Krishna & Aniket Kumar, 2018. "Environment and Big Data: Role in Smart Cities of India," Resources, MDPI, vol. 7(4), pages 1-10, October.
  • Handle: RePEc:gam:jresou:v:7:y:2018:i:4:p:64-:d:174380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/7/4/64/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/7/4/64/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    2. Sotiris Zygiaris, 2013. "Smart City Reference Model: Assisting Planners to Conceptualize the Building of Smart City Innovation Ecosystems," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 4(2), pages 217-231, June.
    3. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture: summary. In Russian," IWMI Books, Reports H041260, International Water Management Institute.
    4. Bhati, Abhishek & Hansen, Michael & Chan, Ching Man, 2017. "Energy conservation through smart homes in a smart city: A lesson for Singapore households," Energy Policy, Elsevier, vol. 104(C), pages 230-239.
    5. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    6. Molden, David, 2007. "Water for food, water for life: a comprehensive assessment of water management in agriculture," IWMI Books, Reports H040193, International Water Management Institute.
    7. Mingxing Chen & Hua Zhang & Weidong Liu & Wenzhong Zhang, 2014. "The Global Pattern of Urbanization and Economic Growth: Evidence from the Last Three Decades," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-15, August.
    8. Hashem, Ibrahim Abaker Targio & Chang, Victor & Anuar, Nor Badrul & Adewole, Kayode & Yaqoob, Ibrar & Gani, Abdullah & Ahmed, Ejaz & Chiroma, Haruna, 2016. "The role of big data in smart city," International Journal of Information Management, Elsevier, vol. 36(5), pages 748-758.
    9. Vito Albino & Umberto Berardi & Rosa Maria Dangelico, 2015. "Smart Cities: Definitions, Dimensions, Performance, and Initiatives," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 3-21, January.
    10. Ouedraogo, Nadia S., 2013. "Energy consumption and human development: Evidence from a panel cointegration and error correction model," Energy, Elsevier, vol. 63(C), pages 28-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dadashpoor, Hashem & Sajadi, Afshin, 2024. "Principles of just urban land use planning," Land Use Policy, Elsevier, vol. 141(C).
    2. Doo-San Kim & Byeong-Cheol Lee & Kwang-Hi Park, 2021. "Determination of Motivating Factors of Urban Forest Visitors through Latent Dirichlet Allocation Topic Modeling," IJERPH, MDPI, vol. 18(18), pages 1-14, September.
    3. Shuhao Liu & Chang Su & Junhua Zhang & Shiro Takeda & Jiarui Liu & Ruochen Yang, 2023. "Cross-Cultural Comparison of Urban Green Space through Crowdsourced Big Data: A Natural Language Processing and Image Recognition Approach," Land, MDPI, vol. 12(4), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    2. Olga Bogdanov & Veljko Jeremiæ & Sandra Jednak & Mladen Èudanov, 2019. "Scrutinizing the Smart City Index: a multivariate statistical approach," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(2), pages 777-799.
    3. Christopher O. AKINBILE & Andrew E. ERAZUA & Toju E. BABALOLA & Fidelis O. AJIBADE, 2016. "Environmental implications of animal wastes pollution on agricultural soil and water quality," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 11(3), pages 172-180.
    4. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    5. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    6. Awulachew, Seleshi Bekele, 2011. "Water-centered growth challenges, innovations and interventions in Ethiopia," Conference Papers h044260, International Water Management Institute.
    7. Cunha, Henrique & Loureiro, Dália & Sousa, Gonçalo & Covas, Dídia & Alegre, Helena, 2019. "A comprehensive water balance methodology for collective irrigation systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    8. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    9. Molle, Francois & Berkoff, Jeremy, 2007. "Water pricing in irrigation: the lifetime of an idea," Book Chapters,, International Water Management Institute.
    10. Bossio, Deborah & Geheb, Kim & Critchley, William, 2010. "Managing water by managing land: Addressing land degradation to improve water productivity and rural livelihoods," Agricultural Water Management, Elsevier, vol. 97(4), pages 536-542, April.
    11. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    12. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    13. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    14. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    15. Gong, Daozhi & Mei, Xurong & Hao, Weiping & Wang, Hanbo & Caylor, Kelly K., 2017. "Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields," Agricultural Water Management, Elsevier, vol. 181(C), pages 23-34.
    16. Holland, Jonathan E. & Luck, Gary W. & Max Finlayson, C., 2015. "Threats to food production and water quality in the Murray–Darling Basin of Australia," Ecosystem Services, Elsevier, vol. 12(C), pages 55-70.
    17. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    18. Renata Biadacz & Marek Biadacz, 2021. "Implementation of “Smart” Solutions and An Attempt to Measure Them: A Case Study of Czestochowa, Poland," Energies, MDPI, vol. 14(18), pages 1-28, September.
    19. Perperidis, Giannis, 2023. "The politics of the city: Critical theory of technology and urban design(s)," Technology in Society, Elsevier, vol. 74(C).
    20. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:7:y:2018:i:4:p:64-:d:174380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.