IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i9p974-d543992.html
   My bibliography  Save this article

Precise Trajectory Tracking Control of Ship Towing Systems via a Dynamical Tracking Target

Author

Listed:
  • Ouxue Li

    (School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China)

  • Yusheng Zhou

    (School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China)

Abstract

This paper proposes a novel control strategy to address the precise trajectory tracking control problem of a ship towing system. At first, the kinematics and dynamics models of a ship towing system are established by introducing a passive steering angle and using its structure relationship. Then, by using the motion law derived from its nonholonomic constraints, the relative curvature of the target trajectory curve is applied to design a dynamical tracking target. By applying the sliding mode control and inverse dynamic adaptive control methods, two appropriate robust torque controllers are designed via the dynamical tracking target, so that both the tugboat and the towed ship are able to track the desired path precisely. As we show, the proposed strategy has excellent agreement with the numerical simulation results.

Suggested Citation

  • Ouxue Li & Yusheng Zhou, 2021. "Precise Trajectory Tracking Control of Ship Towing Systems via a Dynamical Tracking Target," Mathematics, MDPI, vol. 9(9), pages 1-18, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:974-:d:543992
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/9/974/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/9/974/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yusheng Zhou & Zaihua Wang & Kwok-wai Chung, 2019. "Turning Motion Control Design of a Two-Wheeled Inverted Pendulum Using Curvature Tracking and Optimal Control Theory," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 634-652, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikhail Posypkin & Andrey Gorshenin & Vladimir Titarev, 2022. "Preface to the Special Issue on “Control, Optimization, and Mathematical Modeling of Complex Systems”," Mathematics, MDPI, vol. 10(13), pages 1-8, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:974-:d:543992. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.