IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i7p772-d529107.html
   My bibliography  Save this article

Graph Convolutional Network for Drug Response Prediction Using Gene Expression Data

Author

Listed:
  • Seonghun Kim

    (Department of Computer Engineering, Chungbuk National University, Cheongju 28644, Korea
    These authors contributed equally to this work.)

  • Seockhun Bae

    (Department of Computer Engineering, Chungbuk National University, Cheongju 28644, Korea
    These authors contributed equally to this work.)

  • Yinhua Piao

    (Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Korea)

  • Kyuri Jo

    (Department of Computer Engineering, Chungbuk National University, Cheongju 28644, Korea)

Abstract

Genomic profiles of cancer patients such as gene expression have become a major source to predict responses to drugs in the era of personalized medicine. As large-scale drug screening data with cancer cell lines are available, a number of computational methods have been developed for drug response prediction. However, few methods incorporate both gene expression data and the biological network, which can harbor essential information about the underlying process of the drug response. We proposed an analysis framework called DrugGCN for prediction of Drug response using a Graph Convolutional Network (GCN). DrugGCN first generates a gene graph by combining a Protein-Protein Interaction (PPI) network and gene expression data with feature selection of drug-related genes, and the GCN model detects the local features such as subnetworks of genes that contribute to the drug response by localized filtering. We demonstrated the effectiveness of DrugGCN using biological data showing its high prediction accuracy among the competing methods.

Suggested Citation

  • Seonghun Kim & Seockhun Bae & Yinhua Piao & Kyuri Jo, 2021. "Graph Convolutional Network for Drug Response Prediction Using Gene Expression Data," Mathematics, MDPI, vol. 9(7), pages 1-17, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:772-:d:529107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/7/772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/7/772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mathew J. Garnett & Elena J. Edelman & Sonja J. Heidorn & Chris D. Greenman & Anahita Dastur & King Wai Lau & Patricia Greninger & I. Richard Thompson & Xi Luo & Jorge Soares & Qingsong Liu & Francesc, 2012. "Systematic identification of genomic markers of drug sensitivity in cancer cells," Nature, Nature, vol. 483(7391), pages 570-575, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Hui & Zhang, Jian & Zhang, Riquan, 2022. "Nonparametric variable screening for multivariate additive models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    2. G. Gambardella & G. Viscido & B. Tumaini & A. Isacchi & R. Bosotti & D. di Bernardo, 2022. "A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Shi, Chengchun & Xu, Tianlin & Bergsma, Wicher & Li, Lexin, 2021. "Double generative adversarial networks for conditional independence testing," LSE Research Online Documents on Economics 112550, London School of Economics and Political Science, LSE Library.
    4. L. Mathur & B. Szalai & N. H. Du & R. Utharala & M. Ballinger & J. J. M. Landry & M. Ryckelynck & V. Benes & J. Saez-Rodriguez & C. A. Merten, 2022. "Combi-seq for multiplexed transcriptome-based profiling of drug combinations using deterministic barcoding in single-cell droplets," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Nishanth Ulhas Nair & Patricia Greninger & Xiaohu Zhang & Adam A. Friedman & Arnaud Amzallag & Eliane Cortez & Avinash Das Sahu & Joo Sang Lee & Anahita Dastur & Regina K. Egan & Ellen Murchie & Miche, 2023. "A landscape of response to drug combinations in non-small cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Johanna Zerbib & Marica Rosaria Ippolito & Yonatan Eliezer & Giuseppina Feudis & Eli Reuveni & Anouk Savir Kadmon & Sara Martin & Sonia Viganò & Gil Leor & James Berstler & Julia Muenzner & Michael Mü, 2024. "Human aneuploid cells depend on the RAF/MEK/ERK pathway for overcoming increased DNA damage," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Wesley Tansey & Yixin Wang & Raul Rabadan & David Blei, 2020. "Double Empirical Bayes Testing," International Statistical Review, International Statistical Institute, vol. 88(S1), pages 91-113, December.
    8. Min Pan & William C. Wright & Richard H. Chapple & Asif Zubair & Manbir Sandhu & Jake E. Batchelder & Brandt C. Huddle & Jonathan Low & Kaley B. Blankenship & Yingzhe Wang & Brittney Gordon & Payton A, 2021. "The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    9. Hyeong-Min Lee & William C. Wright & Min Pan & Jonathan Low & Duane Currier & Jie Fang & Shivendra Singh & Stephanie Nance & Ian Delahunty & Yuna Kim & Richard H. Chapple & Yinwen Zhang & Xueying Liu , 2023. "A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Jurica Levatić & Marina Salvadores & Francisco Fuster-Tormo & Fran Supek, 2022. "Mutational signatures are markers of drug sensitivity of cancer cells," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Yang Sun & Lu Hu & Zhipeng Tao & Gopala K. Jarugumilli & Hannah Erb & Alka Singh & Qi Li & Jennifer L. Cotton & Patricia Greninger & Regina K. Egan & Y. Tony Ip & Cyril H. Benes & Jianwei Che & Junhao, 2022. "Pharmacological blockade of TEAD–YAP reveals its therapeutic limitation in cancer cells," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Hanwen Xu & Addie Woicik & Hoifung Poon & Russ B. Altman & Sheng Wang, 2023. "Multilingual translation for zero-shot biomedical classification using BioTranslator," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Han Jin & Cheng Zhang & Martin Zwahlen & Kalle Feilitzen & Max Karlsson & Mengnan Shi & Meng Yuan & Xiya Song & Xiangyu Li & Hong Yang & Hasan Turkez & Linn Fagerberg & Mathias Uhlén & Adil Mardinoglu, 2023. "Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:772-:d:529107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.