IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i5p542-d510549.html
   My bibliography  Save this article

Bi-Level Phase Load Balancing Methodology with Clustering-Based Consumers’ Selection Criterion for Switching Device Placement in Low Voltage Distribution Networks

Author

Listed:
  • Gheorghe Grigoraș

    (Department of Power Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania)

  • Bogdan-Constantin Neagu

    (Department of Power Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania)

  • Florina Scarlatache

    (Department of Power Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania)

  • Livia Noroc

    (Department of Power Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania)

  • Ecaterina Chelaru

    (Department of Power Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania)

Abstract

In the last years, the distribution network operators (DNOs) assumed transition strategies of the electric distribution networks (EDNs) towards the active areas of the microgrids where, regardless of the operating regimes, flexibility, economic efficiency, low power losses, and high power quality are ensured. Artificial intelligence techniques, combined with the smart devices and real-time remote communication solutions of the enormous data amounts, can represent the starting point in establishing decision-making strategies to solve one of the most important challenges related to phase load balancing (PLB). In this context, the purpose of the paper is to prove that a decision-making strategy based on a limited number of PLB devices installed at the consumers (small implementation degree) leads to similar technical benefits as in the case of full implementation in the EDNs. Thus, an original bi-level PLB methodology, considering a clustering-based selection criterion of the consumers for placement of the switching devices, was proposed. A real EDN from a rural area belonging to a Romanian DNO has been considered in testing the proposed methodology. An implementation degree of the PLB devices in the EDN by 17.5% represented the optimal solution, leading to a faster computational time with 43% and reducing the number of switching operations by 92%, compared to a full implementation degree (100%). The performance indicators related to the unbalance factor and energy-saving highlighted the efficiency of the proposed methodology.

Suggested Citation

  • Gheorghe Grigoraș & Bogdan-Constantin Neagu & Florina Scarlatache & Livia Noroc & Ecaterina Chelaru, 2021. "Bi-Level Phase Load Balancing Methodology with Clustering-Based Consumers’ Selection Criterion for Switching Device Placement in Low Voltage Distribution Networks," Mathematics, MDPI, vol. 9(5), pages 1-36, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:542-:d:510549
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/5/542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/5/542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guanghai Bao & Sikai Ke, 2019. "Load Transfer Device for Solving a Three-Phase Unbalance Problem Under a Low-Voltage Distribution Network," Energies, MDPI, vol. 12(15), pages 1-18, July.
    2. Gheorghe Grigoras & Bogdan-Constantin Neagu, 2019. "Smart Meter Data-Based Three-Stage Algorithm to Calculate Power and Energy Losses in Low Voltage Distribution Networks," Energies, MDPI, vol. 12(15), pages 1-27, August.
    3. Fan Xu & Xin Shu & Xiaodi Zhang & Bo Fan, 2020. "Automatic Diagnosis of Microgrid Networks’ Power Device Faults Based on Stacked Denoising Autoencoders and Adaptive Affinity Propagation Clustering," Complexity, Hindawi, vol. 2020, pages 1-24, July.
    4. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    5. Jorge Arias & Maria Calle & Daniel Turizo & Javier Guerrero & John E. Candelo-Becerra, 2019. "Historical Load Balance in Distribution Systems Using the Branch and Bound Algorithm," Energies, MDPI, vol. 12(7), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dumisani Mtolo & David Dorrell & Rudiren Pillay Carpanen, 2023. "Balancing of Low-Voltage Supply Network with a Smart Utility Controller Leveraging Distributed Customer Energy Sources," Energies, MDPI, vol. 16(23), pages 1-30, November.
    2. Montalvo-Navarrete, Juan M. & Lasso-Palacios, Ana P., 2024. "Energy access sustainability criteria definition for Colombian rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gheorghe Grigoraș & Bogdan-Constantin Neagu & Mihai Gavrilaș & Ion Triștiu & Constantin Bulac, 2020. "Optimal Phase Load Balancing in Low Voltage Distribution Networks Using a Smart Meter Data-Based Algorithm," Mathematics, MDPI, vol. 8(4), pages 1-29, April.
    2. Gheorghe Grigoraș & Livia Noroc & Ecaterina Chelaru & Florina Scarlatache & Bogdan-Constantin Neagu & Ovidiu Ivanov & Mihai Gavrilaș, 2021. "Coordinated Control of Single-Phase End-Users for Phase Load Balancing in Active Electric Distribution Networks," Mathematics, MDPI, vol. 9(21), pages 1-29, October.
    3. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    4. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    5. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    6. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    7. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    8. Asongu, Simplice A. & Odhiambo, Nicholas M., 2021. "Inequality, finance and renewable energy consumption in Sub-Saharan Africa," Renewable Energy, Elsevier, vol. 165(P1), pages 678-688.
    9. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    10. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    11. Wan-Lin Yong & Jerome Kueh & Yong Sze Wei & Jang-Haw Tiang, 2020. "Energy Consumption and Economic Growth Nexus in China: Autoregressive Distributed Lag (ARDL)," Journal of Public Administration and Governance, Macrothink Institute, vol. 10(2), pages 194212-1942, December.
    12. Ruqayya Ibraheem & Ismat Nasim, 2021. "Globalization, Energy Use and Environmental Degradation in Thailand," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 2(1), pages 01-11, June.
    13. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    14. Sadeq Hooshmand Zaferani & Mehdi Jafarian & Daryoosh Vashaee & Reza Ghomashchi, 2021. "Thermal Management Systems and Waste Heat Recycling by Thermoelectric Generators—An Overview," Energies, MDPI, vol. 14(18), pages 1-21, September.
    15. Setterberg, Hanna & Sjöström, Emma, 2021. "Action Lab: Integrated Communications on Financial and ESG Performance in the Earnings Call," Misum Working Paper Series 2021-1, Stockholm School of Economics, Mistra Center for Sustainable Markets (Misum).
    16. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    17. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    18. Anandkumar Balasubramaniam & Anand Paul & Won-Hwa Hong & HyunCheol Seo & Jeong Hong Kim, 2017. "Comparative Analysis of Intelligent Transportation Systems for Sustainable Environment in Smart Cities," Sustainability, MDPI, vol. 9(7), pages 1-12, June.
    19. Sinha, Avik & Shahbaz, Muhammad, 2018. "Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India," Renewable Energy, Elsevier, vol. 119(C), pages 703-711.
    20. Miriam Müller & Oscar Reutter, 2017. "Vision Development towards a Sustainable North Rhine-Westphalia 2030 in a Science-Practice-Dialogue," Sustainability, MDPI, vol. 9(7), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:542-:d:510549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.